Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение угла наклона плоскости к плоскости проекций

Проекции плоскостей

Лекция №3 (3-я неделя)

Конспект лекций

 

Лектор потока: Зелёв Александр Павлович (доцент кафедры начертательной геометрии и черчения).

 

 

 

Постановка задачи. Дана плоскость общего положения Г. Требуется определить углы наклона плоскости Г к плоскостям проекций (отдельно к плоскости П1, к плоскости П2, к плоскости П3).

Пусть плоскость задана треугольником Г(АВС):

Для изучения алгоритма рассмотрим известный геометрический объект – плоскость крыши дома. В этой плоскости построим горизонталь (кромка крыши). Построим еще одну прямую – линию ската, по которой скатывается материальная точка. Линия ската – прямая, принадлежащая исследуемой плоскости общего положения и принадлежащая данной плоскости.   Из школьной программы: углом между двумя плоскостями является угол между прямыми в данных плоскостях, перпендикулярными к линии пересечения.   В рассматриваемом случае проведем через горизонталь плоскость уровня, параллельную П1. Тогда углом между плоскостью крыши и горизонтальной плоскостью будет угол между линией ската и ее горизонтальной проекцией.
Возвращаемся к комплексному чертежу. По этому алгоритму через любую точку плоскости Г построим горизонталь в плоскости Г. Например, через точку А. Построение начинаем с фронтальной проекции (горизонталь параллельна П1)
«Привязываем» ее к плоскости Г с помощью точки на ВС.
Строим проекции линии ската. Таких линий – бесчисленное множество. Построим, например, через точку В. Используем проекционные свойства прямого угла. Так как линия ската перпендикулярна горизонтали, то на П1 линия ската m1 должна быть перпендикулярна h1.
Линия ската принадлежит плоскости Г. Поэтому ее «привязываем» к плоскости Г с помощью точек этой плоскости. Здесь применили точки В и К. Таким образом, построили две проекции линии ската m.
Далее, надо определить угол наклона линии ската m к плоскости проекций П1. Возьмем любой отрезок на линии ската и с помощью способа прямоугольного треугольника определим этот угол. Для удобства построения используем отрезок ВК, так как в точке К уже построен прямой угол. Искомый угол – угол a.
Для построения угла наклона плоскости Г к плоскости проекций П2 используем фронталь.

 

<== предыдущая лекция | следующая лекция ==>
Лекция: Формирование и управление банковскими ресурсами. Пассивные операции. Собственный капитал банка. Пруденциальное регулирование баков | Прямая, перпендикулярная плоскости
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 5597; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.