Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм УлШелл

Сортировка Шелла

Улучшенные сортировки

В отличие от простых сортировок, имеющих сложность ~N2, к улучшенным сортировкам относятся алгоритмы с общей сложностью ~N*logN.

Необходимо, однако, отметить, что на небольших наборах сортируемых данных (N<100) эффективность быстрых сортировок не столь очевидна: выигрыш становится заметным только при больших N. Следовательно, если необходимо отсортировать маленький набор данных, то выгоднее взять одну из простых сортировок.

Эта сортировка9Д. Л. Шелл назвал ее "сортировкой вставками с убывающим шагом". базируется на уже известном нам алгоритме простых вставок ПрВст. Смысл ее состоит в раздельной сортировке методом ПрВст нескольких частей, на которые разбивается исходный массив. Эти разбиения помогают сократить количество пересылок: для того, чтобы освободить "правильное" место для очередного элемента, приходится уже сдвигать меньшее количество элементов.

На каждом шаге (пусть переменная t хранит номер этого шага) нужно произвести следующие действия:

1. вычленить все подпоследовательности, расстояние между элементами которых составляет kt;

2. каждую из этих подпоследовательностей отсортировать методом ПрВст.

Нахождение убывающей последовательности расстояний kt, kt-1..., k1 составляет главную проблему этого алгоритма. Многочисленные исследования позволили выявить ее обязательные свойства:

· k1 = 1;

· для всех t kt > kt-1;

· желательно также, чтобы все kt не были кратными друг другу (для того, чтобы не повторялась обработка ранее отсортированных элементов).

Дональд Кнут предлагает две "хорошие" последовательности расстояний:

1, 4, 13, 40, 121, _ (kt = 1+3*kt-1)1, 3, 7, 15, 31, _ (kt = 1+2*kt-1 = 2t -1)

Первая из них подходит для сортировок достаточно длинных массивов, вторая же более удобна для коротких. Поэтому мы остановимся именно на ней (желающим запрограммировать первый вариант предоставляется возможность самостоятельно внести необходимые изменения в текст реализации алгоритма).

Как же определить начальное значение для t (а вместе с ним, естественно, и для kt)?

Можно, конечно, шаг за шагом проверять, возможно ли вычленить из сортируемого массива подпоследовательность (хотя бы длины 2) с расстояниями 1, 3, 7, 15 и т.д. между ее элементами. Однако такой способ довольно неэффективен. Мы поступим иначе, ведь у нас есть формула для вычисления kt = 2t -1.

Итак, длина нашего массива (N) должна попадать в такие границы:

kt <= N -1 < kt+1

или, что то же самое,

2t <= N < 2t+1

Прологарифмируем эти неравенства (по основанию 2):

t <= log N < t+1

Таким образом, стало ясно, что t можно вычислить по следующей формуле:

t = trunc(log N))

К сожалению, язык Pascal предоставляет возможность логарифмировать только по основанию е (натуральный логарифм). Поэтому нам придется вспомнить знакомое из курса средней школы правило "превращения" логарифмов:

logmx =logzx/logzm

В нашем случае m = 2, z = e. Таким образом, для начального t получаем:

t:= trunc(ln(N)/ln(2)).

Однако при таком t часть подпоследовательностей будет иметь длину 2, а часть - и вовсе 1. Сортировать такие подпоследовательности незачем, поэтому стоит сразу же отступить еще на 1 шаг:

t:= trunc(ln(N)/ln(2))-1

Расстояние между элементами в любой подпоследовательности вычисляется так:

k:= (1 shl t)-1; {k= 2t-1}

Количество подпоследовательностей будет равно в точности k. В самом деле, каждый из первых k элементов служит началом для очередной подпоследовательности. А дальше, начиная с (k+1)-го, все элементы уже являются членами некоторой, ранее появившейся подпоследовательности, значит, никакая новая подпоследовательность не сможет начаться в середине массива.

Сколько же элементов будет входить в каждую подпоследовательность? Ответ таков: если длину всей сортируемой последовательности (N) можно разделить на шаг k без остатка, тогда все подпоследовательности будут иметь одинаковую длину, а именно:

s:= N div k;

Если же N не делится на шаг k нацело, то первые р подпоследовательностей будут длиннее на 1. Количество таких "удлиненных" подпоследовательностей совпадает с длиной "хвоста" - остатка от деления N на шаг k:

P:= N mod k;
<== предыдущая лекция | следующая лекция ==>
Сортировка простыми обменами | 
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 247; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.