Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сортировка простыми обменами


Пример сортировки

Предположим, что нужно отсортировать тот же набор чисел, при помощи которого мы иллюстрировали метод сортировки простыми вставками:

5 3 4 3 6 2 1

Теперь мы будем придерживаться алгоритма ПрВыб (подчеркнута несортированная часть массива, а квадратиком выделен ее минимальный элемент):

1 шаг: 53436212 шаг: 1343625 3 шаг: 1243635 {***}6Если бы в строке {***} программы ПРВыб стоял знак строгого неравенства, то в качестве минимума была бы выбрана первая тройка. Однако очевидно, что выгоднее брать последний из совпадающих элементов: благодаря этому все они оказываются левее, чем тот превосходящий всех их элемент, с которым выбранный минимум меняется местами. 4 шаг: 1233645{ничего не делаем}5 шаг: 12336456 шаг: 1233465результат: 1233456

Рассмотренными сортировками, конечно же, не исчерпываются все возможные методы упорядочения массивов.

Существуют, например, алгоритмы, основанные на обмене двух соседних элементов: Пузырьковая и Шейкерная сортировки. Обе имеют сложность порядка N2, однако и по скорости работы на любых входных данных, и по простоте реализации они проигрывают другим простым сортировкам. Поэтому мы настойчиво советуем читателю не прельщаться красивыми названиями, за которыми не стоит никакой особенной выгоды.

Тем же, кто все-таки желает ознакомиться с обменными сортировками, а также с подробными данными по сравнению различных сортировок, мы рекомендуем труды Д. Кнута7Д. Кнут. Искусство программирования для ЭВМ. Т.3. Сортировка и поиск (любое издание). или Н. Вирта8Н. Вирт. Алгоритмы и структуры данных (любое издание)..

<== предыдущая лекция | следующая лекция ==>
Эффективность алгоритма ПрВыб | Алгоритм УлШелл

Дата добавления: 2014-01-03; Просмотров: 265; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.