Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Электрический поверхностный эффект





Пусть вдоль шины направлен переменный ток. Положительное направление тока и расположение осей декартовой системы координат даны на рис5.3.

 

Рис.5.3

По закону полного тока найдем напряженность магнитного поля на поверхности шины. Так как в данной задаче, как и в предыдущей, h >2a, то при подсчете можно в первом приближении пренебречь составляющей интеграла вдоль горизонтальных сторон шириной 2а.

Тогда, обозначив напряженность поля на .поверхности шины через , получим 2h=İ. Отсюда = İ/2h.

При составлении уравнений для определения постоянных интегрирования учтем, что слева от шины напряженность ориентирована вдоль положительного направления оси y, а справа – в отрицательном направлении оси y.

Общее решение для плоской волны:

= Ċ1epz2e-pz.

Постоянные интегрирования найдем, используя граничные условия:

при z = – а = Ċ1e-pа+ Ċ2epа,

при z = а – = Ċ1epа+ Ċ2e-pа

Совместное решение двух последних уравнений дает Ċ1= – /2sh pa.

Подставим Ċ1 и Ċ2 в общее решение. Будем иметь

= – ·sh pz/sh pa = –·sh pz)/( 2h ·sh pa).

Напряженность электрического поля Ė направлена вдоль оси x и равна Ė = –d /(σ dz)

или Ė= (p İ ch pz) /(2σh · sh pa).

Плотность тока в любой точке пластины

= σĖ=pİ · ch pz /(2h · sh pa).

Минимальное значение плотности тока будет в средней плоскости шины при z = 0.

Оно равно pİ/(2h · sh pa).

График изменения модуля в функции от z представлен на рис. 5.4. На том же рисунке изображена вторая кривая, она дает зависимость модуля плотности тока от z.

 

Рис.5.4

Чем толще шина, чем больше σ, μ, и ω, тем сильнее проявляется поверхностный эффект, т. е. тем более неравномерным становится распределение плотности тока по сечению шины. И если частота ω очень велика, то может оказаться, что ток будет протекать только по тонкому поверхностному слою шины.

При тонких шинах и относительно небольших частотах поверхностный эффект проявляется в малой степени.



Рассмотрим числовой пример. Медная шина высотой h =2 см и толщиной 2а=0,1 см имеет: σ = 5,6*107 См/м; μr=1. По ней протекает переменный ток I=10 А, угловая частота ω = 105 рад.

Требуется выяснить, во сколько раз плотность тока на краю шины будет больше плотности тока, соответствующей равномерному распределению (когда поверхностный эффект отсутствует). Определяем k=√ωμσ/2=18,7 1/см, =18,7·0,05=0,935; 2=1,87.

Плотность тока на поверхности шины = İ/(2h· th pa),

thpa=(sh2κа+jsin2κа)/(ch 2κа+cos2κа)

=(3,167+j 0,956)/( 3,32–0,292)=1,09 ej16˚ 25΄.

Следовательно,

z=a = 18,7 √2ej45˚ ·10/(2·2·1,09ej16˚25′)= 60,6ej28˚35′ А/cм2.

Плотность тока при равномерном распределении

J=I/2ha=10/0,2=50 А/см2.

Таким образом, в рассматриваемом примере плотность токанаповерхности шины оказалась всего на 20% ( 60,6/50 ≈ 1,2) больше чем плотность тока при равномерном распределении.

Определение активного и внутреннего индуктивного сопротивления проводников на переменном токе часто производят при помощи теоремы Умова - Пойнтинга в комплексной форме. С этой целью подсчитывают поток вектора Пойнтинга через боковую поверхность проводника на длине в один метр и делят его на квадрат тока, протекающего по проводнику, получают комплекс сопротивления проводника на единицу длины (на один метр).

Действительно,

и Z =R+jX= /I2 .

В качестве примера определим активное и внутреннее индуктивное сопротивление прямоугольной шины длиной в один метр. Энергия в шину проникает с двух сторон. Поверхность шины с двух сторон на длине в 1 м равна 2h1.

Z=R+jX=

или Z= 18,7 √2ej45˚/(5,6·105·4·1,09 ej16˚25′)=9,5·10-4+j 5,16·10-4 Ом/м

Следовательно, активное сопротивление провода на 1 см длины шины равно 9,5·10-6 Ом и внутреннее индуктивное сопротивление 5,16· 10-6 Ом.

Для сравнения заметим, что омическое сопротивление единицы длины плоской шины, т. е. сопротивление постоянному току, равно 8,92·10-6 Ом/м. Таким образом, в силу поверхностного эффекта активное сопротивление увеличилось с 8,92·10-6 до 9,5·10-6 Ом/м, т. е. на 6%.

В рассматриваемом числовом примере в силу того, что шина довольно тонкая и частота сравнительно невысока, активное сопротивление шины лишь очень на немного превышает омическое сопротивление. В других случаях это превышение может быть много больше.

 





Дата добавления: 2014-01-03; Просмотров: 496; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. Q Полный экономический эффект (результат) природоохранных мероприятий (Р)
  2. Q Экономическая эффективность природоохранных мероприятий
  3. Анализ наилучшего и наиболее эффективного использования земли
  4. Анализ наилучшего и наиболее эффективного использования земли как свободной
  5. Анализ наилучшего и наиболее эффективного использования собственности как улучшенной
  6. Анализ обеспеченности предприятия материальными ресурсами. 2. Анализ производственных запасов. 3. Анализ эффективности использования материальных ресурсов.
  7. АНАЛИЗ ОБЪЕМОВ И ЭФФЕКТИВНОСТИ ИНВЕСТИЦИОННОЙ ДЕЯТЕЛЬНОСТИ
  8. Анализ уровня и эффективности организации труда
  9. Анализ факторов эффективности использования основных фондов
  10. Анализ экономической эффективности использования земельных угодий и мероприятия по их реализации
  11. АНАЛИЗ ЭФФЕКТИВНОГО ИСПОЛЬЗОВАНИЯ КАПИТАЛА
  12. Анализ эффективности использования материальных ресурсов

studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.