Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Алгоритм симплексного метода


Общая постановка задачи

Симплексный метод решения задач ЛП

Симплексный метод – метод последовательного улучшения плана.

Метод является универсальным, так как позволяет решить практически любую задачу линейного программирования. Математическая модель задачи приводится к каноническому (стандартному) виду. Заполняется опорная симплекс – таблица с использованием коэффициентов целевой функции и системы ограничений. Решается задача по алгоритму.

Идея симплексного метода заключается в том, что начиная с некоторого исходного опорного решения осуществляется последовательно направленное перемещение по допустимым решениям к оптимальному. Значение целевой функции для задач на максимум не убывает. Так как число допустимых решений конечно, то через конечное число шагов получим оптимальное решение.

 

 

 

1.Математическую модель задачи привести к каноническому (стандартному) виду.

 

2. Построить начальную симплекс-таблицу исходя из стандартного вида.

 

3. Найти разрешающий столбец. В строке коэффициентов ЦФ найти значение с самим маленьким отрицательным числом. Этот столбец и будет разрешающим.

 

4. Вычислить разрешающую строку и ведущий элемент (Почленно разделить столбец свободных членов на элементы разрешающего столбца, за исключением строки ЦФ. Выбрать наименьшее из частных. Эта строка будет разрешающей.Ведущий элемент будет на пересечении разрешающего столбца и разрешающей строки.).

 

5.Построить новую симплекс-таблицу-второй шаг.

 

При построении новой таблицы убрать из базиса строку с переменной разрешающей строки в предыдущей таблице. Ввести в базис строку с названием разрешающего столбца предыдущей таблицы.

 

 

· Построение ведущей строки в новой таблице. Почленно поделить всю разрешающую строку на разрешающий элемент.

· Построение других строк в новой таблице. Почленно умножить ведущую строку на соответствующие этим строкам элементы разрешающего столбца из предыдущей таблицы и прибавить к соответствующим строкам в старой таблице.



 

6. Проверяем таблицу второго шага на оптимальность. Если в строке целевой функции нет отрицательных элементов, тогда таблица имеет оптимальный план, записать ответ. Если в строке ЦФ есть отрицательный элемент (элементы), тогда переходят к следующему (третьему) шагу, строят новую симплекс-таблицу в соответствии п.5 и затем проверяют ее на оптимальность. Построение таблиц заканчивается с нахождением оптимального плана.

 

Прямая задача на минимум решается следующим образом:

· Написать математическую модель двойственной задачи в стандартном виде

· Решить двойственную модель симплекс - методом

· Записать ответ.

 

 

Связь между задачами двойственной пары в том, что, решая симплексным методом одну из них, автоматически получаем решение другой.

Для этого достаточно воспользоваться соответствием переменных прямой и двойственной задач в последней симплекс-таблице.

 

Х1 x2 xn S1 S2 Sm
S1 S2 Sm y1 y2 ym

 

Задача

На предприятии имеется возможность выпускать n видов продукции (1,2,…n). При ее изготовлении используются ресурсы Р1, Р2, Р3. Размеры прямых затрат ресурсов ограничены соответственно величинами b1, b2, b3. Расход i –го ресурса на единицу продукции j-того вида составляют aij. Цена единицы продукции j-того вида равна cj ден. ед. Сформулировать прямую и двойственную задачу и раскрывать экономический смысл всех переменных.

 

Требуется:

Найти оптимальный план симплекс-методом.

Найти решение двойственной задачи

Указать дефицитность ресурсов

Обосновать эффективность плана производства

Оценить целесообразность приобретения ресурса

Оценить целесообразность выпуска новой продукции

Данные :

b1 = 25, b2 = 30, b3 = 42

a11= 2, a12= 3, a13= 2, a14= 1

a21= 4, a22= 1, a23= 3, a24= 2

a31= 3, a32= 5, a33= 2,a34= 2

c1= 6, c2= 5, c3= 4, c4= 3

 

<== предыдущая лекция | следующая лекция ==>
Анализ решения данной задачи | Стандартный вид

Дата добавления: 2014-01-03; Просмотров: 2013; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.