Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Комплексные числа




Комплексным числом называется выражение

(9.1),

где и - действительные числа; - мнимая единица, определяемая равенством

или (9.2).

Число называют действительной частью комплексного числа и обозначают ; - мнимая часть комплексного числа . Ее обозначают . Если , то число называют чисто мнимым, если , то число , есть действительное число.

Два комплексных числа и называют комплексно сопряженными числами.

Два комплексных числа и считаются равными, если и . Комплексное число , если и . Плоскость, точки которой изображают комплексные числа, называется комплексной плоскостью.

Иногда комплексное число удобнее изображать в виде вектора , начало которого совпадает с началом координат, соединяющего точку с точкой . Длина этого вектора называется модулем комплексного числа и обозначается .

.

Угол между осью и вектором , отсчитанный против часовой стрелки, называется аргументом комплексного числа и обозначается .

Аргумент числа определяется с точностью до слагаемого , где - целое число. Главное значение аргумента числа - значение аргумента, удовлетворяющее неравенству . Главное значение аргумента комплексного числа обозначается через : .

Запись числа в виде называют алгебраической формой записи комплексного числа.

Сумма, разность комплексных чисел и умножение определяется так же, как действия над соответствующими векторами.

Суммой комплексных чисел и называется комплексное число

(9.3).

Разностью комплексных чисел и называется комплексное число

(9.4).

Произведение комплексного числа на действительное число называется комплексное число .

Произведение двух комплексных чисел и , записанных в алгебраической форме определяется как произведение двучленов:

(9.5).

Произведением двух комплексно сопряженных чисел служит действительное число

(9.6).

Деление комплексных чисел определяется, как действие обратное умножению. Частное двух комплексных чисел и определяется следующим образом:

(9.7).

Наряду с прямоугольной системой координат введем полярную систему, начало которой совпадает с началом прямоугольной системы, а полярная ось – с положительным направлением оси (Рис. 8).

 

 

Рис. 8.

Из Рис.8 следует, что:

.

Подставляя и в алгебраическую форму комплексного числа, получим

(9.8).

Выражение (9.8) называют тригонометрической формой записи комплексного числа , где .

Пусть даны два комплексных числа и . Записанные в тригонометрической форме:

.

Тогда .

(9.9).

Таким образом, при умножении комплексных чисел их модули перемножаются, а аргументы складываются; при делении комплексных чисел их модули делятся, а аргументы вычитаются.

Если - целое положительное число, то из (9.9) следует:

(9.10).

Корнем -й степени из комплексного числа называется такое комплексное число , -я степень которого равна , т.е. .

Корень -й степени из обозначается .

Если , то равен:

(9.11).

Подставляя в (9.11) значения получим ровно различных корней -й степени из .

Пример 12. Дано комплексное число .

Записать число в алгебраической и тригонометрической формах. Найти все корни уравнения .

Решение. Запишем число в алгебраической форме:

.

Найдем : .

Вычислим . Тригонометрическая форма записи комплексного числа имеет вид:

.

Вычислим :

при

при

при

Кроме алгебраической и тригонометрической форм записи комплексного числа , применяется более короткая, так называемая показательная форма комплексного числа , согласно которой

.

Пусть и , тогда:

.




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 210; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.