КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Арифметического
Таким образом, вес арифметической средины в n раз больше веса отдельного измерения. Оценка точности неравноточных измерений а) Понятие неравноточных измерений Измерения, выполненные в различных условиях, различными инструментами, различным числом приёмов называют неравноточными. Достоинство результата измерения выражают в этом случае числом, называемым весом измерения. Чем надёжнее результат измерения, тем больше его вес. Веса устанавливаются в зависимости от условий измерений. Так как определённым условиям измерений соответствует определённая средняя квадратическая ошибка, то наиболее достоверно устанавливать веса измерений в зависимости от неё. Весом р отдельного результата измерения называют отвлечённое число с, обратно пропорциональное квадрату средней квадратической ошибки m2, т.е. р = . (38) Вес арифметической средины Р может быть представлен аналогичным соотношением Р = . (39) Взяв отношение веса арифметической средины Р к весу отдельного измерения р, получим
. (40) Так как вес отдельного измерения р = 1, то вес арифметической средины Р = n. Следовательно, вес арифметической средины равен числу измерений, из которых она составлена. б) Оценка точности отдельного измерения и среднего Оценка точности результатов неравноточных измерений заключается в определении вероятнейшего значения весового арифметического среднего Lо, средней квадратической ошибки отдельного результата измерения , вес которого равен 1, исредней квадратической ошибки М о арифметической средины. При этом значение арифметической средины рассчитывается из соотношения Lo = . (41)
Дата добавления: 2017-01-14; Просмотров: 56; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |