Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение кинематических параметров для материальной точки, движущейся криволинейно




Задание

Определение скорости и ускоренна точки по заданным уравнениям ее движения По заданным уравнениям движения точки М установить вид ее траектории и для момента времени t= t 1 (сек) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке.

Необходимые для решения данные приведены в табл.1.

 

Пример выполнения задания

Исходные данные в см и сек:

} (1)

t 1 =

Решение

Уравнения движения (1) являются параметрическими уравнениями траектории точки М. Чтобы получить уравнение траектории в обычной координатной форме, исключим время t из уравнений движения.

Тогда

у = х 2 - 1. (2)

Это выражение есть уравнение параболы.

Для определения скорости точки находим проекции скорости на оси координат:

ux = = 4 см/сек;

uy = = 32 t см/сек.

Модуль скорости точки

u = . (3)

Аналогично проекции ускорения точки

wx = = 0; wy = = 32 см/сек2.

Модуль ускорения точки

w = = 32 см/сек2.

Координаты точки, а также ее скорость, ускорение и их проекции на координатные оси для заданного момента времени t = 1/2 сек приведены в табл.2.

Таблица 2

Координаты, См Скорость, см/сек Ускорение, см/сек2 Радиус кривизны, см
x Y ux uy u wx wy wn wt w r
        16,5     7,94     34,3

 

Касательное ускорение находим путем дифференцирования модуля скорости (З):

wt = ;

= = .

При t = 1/2 сек

= = 31 см/сек2

Следовательно, модуль касательного ускорения

wt = 31 см/сек 2.

Знак «+» при показывает, что движение точки ускоренное и, следовательно, направления и совпадают.

Нормальное ускорение точки в данный момент времени

wn = = = 7,94 см/сек 2

Радиус кривизны траектории в той точке, где при t = 1/2 сек находится в точке М,

r = = = 34,3 см.

Полученные значения wt и wn и r также приведены в таблице.

Пользуясь уравнением (2), вычерчиваем траекторию (рис.1) и показываем на ней положение точки М в заданный момент времени. Вектор строим по составляющим и , причем этот вектор должен быть направлен по касательной к траектории точки. Вектор находим как по составляющим и , так и по и , чем контролируется правильность вычислений.

Рис.1


Таблица 1

Номер варианта Уравнения движения t 1, сек
x = x(t) см y = y(t) см
    —2 t 2+3 5 t   ½
  4 cos2 t + 2 4 sin2 t  
  -cos t 2 + 3 sin t 2 - 1  
    4 t + 4 -  
  2sin t — 3 cos t + 4  
    3 t 2 + 2   —4 t   ½
  Зt2 - t + 1 5 t 2 - t - 2  
  7 sin t 2 + 3 2 — 7 cos t 2  
  -   3 t + 6  
  — 4 cos t —2sin t — 3  
  — 4 t 2 + 1 - 3 t ½
  5 sin2 t 5 cos2 t— 3  
  5 cos t 2 — 5 sin t 2  
    -2 t - 2  
  4cos t —3sin t  
  3t   4 t 2 + 1   ½
  7 sin2 t — 5 — 7 cos2 t  
  1 + 3 cos t 2 3 sin t 2 + 3  
    — 5t2 — 4   3 t  
    2 — 3 t — 6 t2 3 - t - 3 t 2  
  6 sin t 2 2 6 cos t 2 + 3  
  22.   7 t 2—3   5 t
    3 — 3 t 2 + t 4 - 5 t 2 + t  
  4 cos t — 1 — 4 sin t  
    —6 t   — 2 t 2 4  
  8 cos2 t + 2 — 8 sin2 t — 7  
  — 3 - 9 sin t 2 —9cos t 2 + 5  
    — 4 t 2 + 1   —З t  
  5 t 2 + t - 3   3 t 2 + t + 3  
  2 cos t 2 2 - 2 sin t 2 + 3  

СПИСОК ЛИТЕРАТУРЫ

 

1. Сборник заданий для курсовых работ по теоретической механики. Под ред. проф. А.А. Яблонского. Учеб. пособие для втузов. М., «Высшая школа», 1972.- 432 с.

2. Бать М. И. И др. Теоретическая механика в примерах и задачах. М., «Политехника», 1995. – 670 с.

3. Мещерский И. В. Задачи по теоретической механики. М.: «Лань», 2001.- 448 с.

4. Тарг С. М. Краткий курс теоретической механики: Учебник для втузов. – 12 изд., стер. – М.: Высшая школа, 2002. – 416 с.

5. Федута А. А., Чигарёв А. В., Чигарёв Ю. В. Теоретическая механика и методы математики: - Уч. пособие, - Минск.: УП «Технопринт», 2000. – 504 с.

6. Яблонский А. А., Никифорова В. А. Курс теоретической механики. М.: «Лань», 2001. – 768 с.

7. Цывильский В. Л. Теоретическая механика. М., «Высшая школа» 2001. – 319 с.

 


 

 




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 381; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.