КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Расчетно-графическая работа 5
РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ РАМ МЕТОДОМ ПЕРЕМЕЩЕНИЙ
Методические указания
Нужно твердо усвоить идею метода перемещений, смысл основной системы и правила определения степени угловой и линейной подвижности рамы (степени кинематической неопределимости). Для определения степени кинематической неопределимости удобно пользоваться следующей формулой: n=nу+nл, где nу - число неизвестных углов поворота, равное числу жестких узлов рамы; nл - число неизвестных линейных перемещений, равное степени свободы шарнирной схемы рамы и определяемое по формуле nл=Ш-3К, где Ш - число простых и приведённых к ним сложных шарниров, К - число замкнутых контуров рамы. При выборе основной системы метода перемещений необходимо учитывать, что линейные связи должны быть поставлены не только по направлению возможных линейных перемещений, но и для устранения мгновенной изменяемости системы, образованной после постановки шарниров во все узлы (включая опорные). Построение единичных и грузовых эпюр в основной системе производится по специальным таблицам. При этом значения ординат необходимо выражать через общую жесткость - EI.
9. Производим статическую проверку полученной эпюры. (рис.31)
Рис.31 10. Деформационная проверка. Определяем вертикальное перемещение узла 6 в заданной системе. Для этого перемножим окончательную эпюру М на единичную эпюру в основной системе метода сил. (рис.32) Рис.32 11. По эпюре моментов строим эпюру поперечных сил (рис.33):
M67= - 0,3 -1,5= -1,8 кНм; M76= - 0,6 -1,5= -0,9 кНм; M78= - 0,45= кНм; M87= 0.
Рис.30
При определении коэффициентов следует внимательно следить за их знаками (rii>0), а также использовать теорему о взаимности реакций (rik=rki). После определения значений неизвестных рекомендуется построить эпюры моментов по формуле
.
Суммирование этих эпюр рекомендуется производить по характерным точкам и в пояснениях обязательно проводить все расчеты. Эпюры поперечных и продольных сил строятся по эпюре моментов так же, как и в контрольной работе 5. Для проверки правильности эпюры M, необходимо составить условия статического равновесия узлов рамы по изгибающим моментам (статическая проверка).
ЗАДАЧА 1 Для заданной рамы (рис19.,а) требуется: · построить эпюры изгибающих моментов, поперечных и продольных сил; · проверить правильность построения эпюр. Р е ш е н и е 1. Определяем степень кинематической неопределимости заданной рамы: nу = 1; nл = 10-3×3=1; n =1+1=2.
Образуем основную систему, введя связи, препятствующие неизвестным угловому (подвижная заделка) и линейному (опорный стержень) перемещениям (рис.19,б).
Рис.19
3. Составим систему канонических уравнений метода перемещений для заданной рамы:
ì r11Z1+r12Z2+R1p=0; í î r21Z1+r22Z2+R2p=0. 4. Используя таблицу 1 приложений, построим для основной системы единичные (рис.20,а,б). и грузовую эпюры (рис.20,в).
5. Применяя метод вырезания узлов, определим коэффициент при неизвестном и свободный член канонического уравнения (рис.29). Рис.29
Из рис.29 имеем: R1P= - (1,5+1,5)= - 3 кНм 6. Подставляем найденные значения в уравнение и решаем его: 6,67EI×Z1 - 3=0; Z1=0,45/EI;
7. Строим исправленную эпюру (рис.30,а). 8. Строим окончательную эпюру изгибающих моментов (рис.30,б): M12= M21= M23= M32=0 M26= M62=0; M15= 0; M51= 0,45кНм; M37= 0; M73= 0,45кНм; M45= 0; M54= 0,45кНм; M56= - 0,6 -1,5= -0,9 кНм; M65= - 0,3 -1,5= -1,8 кНм;
3. Так как внешняя нагрузка симметричная, то обратносимметричные неизвестные заведомо равны нулю: Z2= Z3= Z4=0. Каноническое уравнение метода перемещений будет иметь следующий вид:
r11Z1 +R1p=0;
4. Используя таблицу 2 приложений, построим для основной системы единичную (рис.28,а). и грузовую эпюры (рис.28,б).
Рис.28
Рис.20
5. Определяем коэффициенты при неизвестных и свободные члены системы канонических уравнений. Для этого вырежем вначале узел 5 и рассмотрим условие его равновесия
6. (åМ=0), т.е. определим коэффициенты и свободный член первого уравнения, представляющие собой реактивные моменты во введённой заделке (рис.21,а,б,в).
Рис.21 Из рис.21,а,б,в имеем: Для определения коэффициентов второго уравнения, представляющих реакции во введённом стержне, рассечём стойки и рассмотрим условие равновесия (åX=0) средней части рамы, содержащей введённый стержень (рис.22,а,б,в). Из рис.22,а,б,в следует:
ЗАДАЧА 2 Для заданной рамы (рис27.,а) требуется: · построить эпюры изгибающих моментов, поперечных и продольных сил; · проверить правильность построения эпюр. Р е ш е н и е 1. Определяем степень кинематической неопределимости заданной рамы: nу=3; nл=19-3×6=1; n=3+1=4.
2. Образуем основную систему метода перемещений, применяя группировку неизвестных (рис.27,б).
Рис.27
Рис.25 11. Методом вырезания узлов строим эпюру продольных сил (рис.26).
Рис.26 Рис.22 6. Подставляем найденные значения в систему уравнений и решаем её: ì 4,25EI×Z1+0,375EI×Z2+80=0; í î 0,375EI×Z1+0,5625EI×Z2=0.
Z1=-20/EI; Z2=13,333/EI.
7. Строим исправленные эпюры, умножая каждую единичную эпюру на соответствующее найденное перемещение (рис.23,а,б). При этом знак у первой эпюры изменится на противоположный, т.к. Z1 имеет отрицательное значение.
8. Строим окончательную эпюру изгибающих моментов, суммируя исправленные и грузовую эпюры (рис.24,а):
Рис.23
M14=5 кНм; M41=0; M54=7,5-80=-72,5 кНм; M45=0; M56=-40+10=-30 кНм; M65=20-10=10 кНм; M52=-30-5=-35 кНм; M25=0; M53=-7,5= кНм; M35=0.
Рис.24 9. Производим проверку полученной эпюры. Для этого вырежем узел 5 (рис.24,б) и проверим условие равновесия вида: åM=0; åM=-72,5+30+7,5+35=0 - условие выполняется. 10. По эпюре моментов строим эпюру поперечных сил (рис.25):
МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ Департамент научно-технологической политики и образования ФГОУ ВПО Костромская ГСХА
Кафедра сопротивления материалов и графики
МЕТОДИЧЕСКИЕ УКАЗАНИЯ к расчётно-графическим работам по курсу «Строительная механика» (часть 2)
Кострома 2011 УДК 624.04 Методическое пособие составил: Афанасьев Е.Н.
Рекомендовано Методической комиссией архитектурно-строительного факультета КГСХА
Рецензент: доцент, к.т.н. Гуревич Т.М.
В методическом пособии даются в конспективной форме рекомендации о методах расчета задач, приводятся необходимые формулы, таблицы и примеры решения задач.
Дата добавления: 2017-01-14; Просмотров: 258; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |