Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Окисление спиртов




Ацетали, в отличие от альдегидов, более устойчивы к окислению. Благодаря обратимости взаимодействия со спиртами их часто используют в органическом синтезе для «защиты» альдегидной группы.

При взаимодействии альдегидов со спиртами могут образовываться полуацетали и ацетали. Полуацетали представляют собой соединения, в которых при одном атоме углерода содержится гидроксильная и алкоксильная группа. К ацеталям относят вещества, в молекулах которых содержится атом углерода с двумя алкоксильными заместителями.

Взаимодействие, со спиртами.

Взаимодействие с водой.

Гидрирование - присоединение водорода.

Р. Присоединения

Карбонильные соединения восстанавливаются до спиртов водородом, алюмогидридом лития, боргидридом натрия. Водород присоединяется по связи C=O. Реакция идет труднее, чем гидрирование алкенов: требуется нагревание, высокое давление и металлический катализатор (Pt, Ni):

4.Присоединение гидросульфитов.

Гидросульфит NaHSO3 тоже присоединяется по связи C=O с образованием кристаллического производного, из которого карбонильное соединение может быть регенерировано. Бисульфитные производные используются для очистки альдегидов и кетонов.

Кето́ны — органические вещества, в молекулах которых карбонильная группа связана с двумя углеводородными радикалами.

Общая формула кетонов: R1-CO-R2.

Как и альдегиды, кетоны характеризуются высокой реакционной способностью. Химическая активность альдегидов и кетонов тем выше, чем больше положительный заряд на атоме углерода карбонильной группы. Радикалы, увеличивающие этот положительный заряд, резко повышают реакционную способность альдегидов и кетонов, а радикалы, уменьшающие положительный заряд, оказывают противоположное действие. В кетонах две алкильные группы являются электронодонорными, откуда становится понятным, почему кетоны менее активны в реакциях нуклеофильного присоединения по сравнению с альдегидами.
Примеры реакций этого типа для альдегидов подробно рассмотрены ранее (см. "Альдегиды. Химические свойства"), поэтому, приводя некоторые примеры реакций нуклеофильного присоединения по карбонильной группе кетонов, уделим внимание лишь отличиям их химических свойств от альдегидов.

1. Присоединение синильной кислоты.

R
\
CH3–®C=O(кетон) + H– CN –KCN
/
R’OH
I
-оксиизомасляной кислоты)aC–CN(нитрил
I
CH3

2. Присоединение гидросульфита натрия.

R
\
R–®C=O(кетон) + HSO3Na
/
R’OH
I
C–SO3Na(гидросульфитное производное кетона)
I
R’

Следует отметить, что в реакцию с гидросульфитом натрия вступают только метилкетоны, т. е. кетоны, имеющие группировку CH3.
3. По сравнению с альдегидами для кетонов не характерны реакции со спиртами.
4. Присоединение водорода. Присоединение водорода к кетонам приводит к образованию вторичных спиртов.

R
\
®C=O(кетон) + H2 –Ni
/
R’R
\
CH–OH(вторичный спирт)
/
R’

5. Кетоны окисляются значительно труднее, чем альдегиды. Кислород воздуха и слабые окислители не окисляют кетоны. Кетоны не дают реакции "серебряного зеркала" и не реагируют с гидроксидом меди (II). При действии сильных окислителей в жестких условиях углеродная цепь молекулы кетона разрушается рядом с карбонильной группой и образуются кислоты (иногда кетоны в зависимости от строения исходного кетона) с меньшим числом атомов углерода.

 

При окислении первичных спиртов получают альдегиды, которые потом окисляются до карбоновых кислот:

 

Чтобы предотвратить превращение альдегида в кислоту, его отгоняют в ходе реакции (т. кипения альдегида, не образующего межмолекулярные водородные связи, ниже т.кип. спирта и кислоты)

При окислении вторичных спиртов образуются кетоны

2. В промышленности альдегиды и кетоны получают дегидрированием спиртов, пропуская пары спирта над нагретым катализатором (Cu, соединения Ag, Cr или Zn).
Этот способ позволяет получать карбонильные соединения, в особенности альдегиды, без побочных продуктов окисления.

3. Гидротация алкинов (реакция Кучерова)
присоединения воды к ацетилену в присутствии солей ртути приводит к образованию ацетальдегида:

 

 

Кетоны получают при гидротации других гомологов ряда алкинов:

Билет №19

Карбо́новые кисло́ты — класс органических соединений, молекулы которых содержат одну или несколько функциональных карбоксильных групп -COOH.




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 1319; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.