КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Спектральное преобразование сигнала
Поскольку любой звук раскладывается на синусоидальные волны, мы можем построить частотный спектр звука. Спектр частот звуковой волны представляет собой график зависимости амплитуды от частоты. Фазовые изменения часто происходят по причине временных задержек. Например, каждый цикл сигнала в 1000 Гц занимает 1/1000 секунды. Если задержать сигнал на 1/2000 секунды (полупериод), то получится 180-градусный сдвиг но фазе. Заметим, что этот эффект опирается на зависимость между частотой и временной задержкой. Если сигнал в 250 Гц задержать на те же самые 1/2000 секунды, то будет реализован 45-градусный сдвиг по фазе. Если сложить вместе две синусоидальные волны одинаковой частоты, то получится новая синусоидальная волна той же частоты. Это будет верно даже в том случае, если два исходных сигнала имеют разные амплитуды и фазы. Например, Asin(2 Pi ft) и Bcos(2 Pi ft) две синусоиды с разными амплитудами и фазами, но I c одинаковой частотой. Для измерения амплитуды одной частоты нужно умножить имеющийся сигнал на синусоиду той же частоты и сложить полученные отсчеты. Если повторить эти вычисления для различных значений f, то можно измерить амплитуду всех частот в сигнале. Для любого целого f меньшего N легко определяется значение Аf, представляющее амплитуду соответствующей частоты как долю от общего сигнала. Эти значения могут быть вычислены по той же формуле: Если мы знаем значения Af мы можем восстановить отсчеты. Для восстановления сигнала необходимо сложить все значения для разных частот. Чтобы осуществлять точное обратное преобразование Фурье, помимо амплитуды и частоты необходимо измерять фазу каждой частоты. Для этого нужны комплексные числа. Можно изменить описанный ранее метод вычислений так, что он будет давать двумерный результат. Простое коми1 лексное число – это двумерное значение, поэтому оно одновременно но представляет и амплитуду, и фазу. Основная идея быстрого преобразования Фурье заключается в том, что каждую вторую выборку можно использовать для получения половинного спектра. Формально это означает, что формула дискретного преобразования Фурье может быть представлена в виде двух сумм. Первая содержит все четные компоненты оригинала, вторая — все нечетные Фильтрация спектра. Сравнение с эталонными образцами в базе Для сравнения двух фрагментов использовался следующий подход:
Дата добавления: 2015-08-31; Просмотров: 697; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |