КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Тепловой баланс водных объектов
Общий вид уравнения теплового баланса. При решении весьма многих гидрологических вопросов широкое применение находят законы сохранения энергии и материн, записанные в форме уравнения теплового баланса, применительно к условиям водных объектов. Использование уравнения теплового баланса позволяет решать задачи, относящиеся к области расчета нагревания и охлаждения воды в реках и озерах, таяния снега, испарения воды, нарастания льда, и выяснять закономерность развития ряда других важных гидрологических процессов, совершающихся под влиянием теплообмена между водными объектами и окружающей средой, количественным выражением которого и является уравнение теплового баланса. При составлении уравнения теплового баланса необходимо осуществить учет всех потоков тепла, поглощаемых рассматриваемым водным объектом или расходуемых им через плоскости раздела, ограничивающие его от окружающего пространства. Элементами теплообмена между водным объектом и окружающей средой являются: Sср - поглощаемая водой (снежным, ледяным покровом) суммарная (прямая и рассеянная) коротковолновая солнечная радиация; Sиа - поглощаемое водой (снежным, ледяным покровом) встречное длинноволновое излучение атмосферы; Sив - потери тепла водой (снежным, ледяным покровом) путем длинноволнового излучения; Sтa - турбулентный обмен тепла с атмосферой путем конвекции, молекулярной и турбулентной теплопроводности (за счет разности температуры воды и воздуха); Sик - тепло, затрачиваемое на испарение или выделяемое при конденсации; Sтд - теплообмен с дном; Sпр - тепло, приносимое водой притоков и источников; на бесприточном участке реки - тепло, поступающее через входной створ участка; Sст - тепло, выносимое поверхностным и подземным стоком; на бесприточном участке реки - тепло, приносимое через выходной створ участка; Soc - тепло, поступающее от дождевых осадков или затрачиваемое на таяние снега, выпадающего в водоем; S'ик - тепло, теряемое вместе с испарившейся водой или приходящее вместе с конденсирующимся паром воды; Sл - тепло, выделяемое при образовании льда или затрачиваемое при его таянии на месте (в пределах данного водоема или в пределах рассматриваемого участка); Sлп - тепло, затрачиваемое на таяние льда, внесенного на рассматриваемый участок реки или водоем притоками; Sкэ - тепло, выделяемое при рассеянии кинетической энергии. Помимо указанных элементов теплообмена, на температуру воды оказывает влияние тепло, выделяющееся при биохимических процессах, тепло, поступающее из недр земли; отраженная от берега и суммарная солнечная радиация и т. п. Существенного влияния эти источники тепла обычно не оказывают и поэтому в тепловом балансе не учитываются. Тепло Sкэ, выделяющееся при движении жидкости за счет сил трения, начинает играть заметную роль лишь при скоростях течения, превышающих 0,4—0,5 м/с, наблюдающихся в реках и сильно проточных озерах и водохранилищах. Составляющие теплового баланса Scp, Sиа, Sпр и Sкэ всегда положительны; Sив, Sст и Sлп всегда отрицательны; остальные составляющие могут обусловливать как увеличение, так и уменьшение запаса тепла в водной массе. Тепловой поток Sик положителен при конденсации и отрицателен при испарении. Если тепловые потоки Sта и Sтд направлены от водной массы в атмосферу или литосферу, то они будут иметь отрицательный знак, при обратном потоке тепла эти составляющие войдут в уравнение теплового баланса со знаком плюс. При образовании льда тепловой поток Sд положителен, при таянии - отрицателен; значение Soc положительно при дождевых осадках и отрицательно при снеге. Сопоставляя положительные и отрицательные тепловые потоки, можно найти величину результирующего теплового потока S, характеризующую изменение теплосодержания в рассматриваемом объеме воды за промежуток времени τ. При увеличении содержания тепла в озере S положительно, а при уменьшении - отрицательно. Учитывая изложенное, уравнение теплового баланса для некоторого периода времени τ может быть записано в виде Во многих случаях нет необходимости учитывать все перечисленные составляющие теплового баланса. Так, в теплый период года, а на незамерзающих водных объектах и в течение любого периода нет необходимости учитывать теплоту образования и таяния льда Sл, Sлп. Применительно к условиям бессточных озер отпадает тепловой поток Sст. Часто можно пренебречь теплом, приносимым притоками (Sпр),дождевыми осадками (Soc) и затрачиваемым на таяние льда (Sлп), приносимого притоками. На глубоких озерах (глубиной более 20 м) можно пренебречь и членом Sтд, так как годовой ход температуры у дна таких озер сильно сглажен и потому теплообмен между водной массой и ложем очень мал. На мелководных озерах, особенно в период ледостава, роль теплообмена с дном возрастает и пренебрегать членом Sтд уже нельзя. Для периода, когда на водоеме отсутствуют ледовые образования, основную роль в тепловом балансе играет суммарная солнечная радиация Scp, излучение атмосферы Sиа, излучение воды Sив, расход тепла на испарение Sис и турбулентный теплообмен с атмосферой Sта, характеризующие теплообмен водной массы с атмосферой. При наличии снежно-ледяного покрова и установившегося в его толще теплового режима тепловые потоки, характеризующие теплообмен с атмосферой (Scp, Sиа, Sис, Sта), можно заменить одним потоком Sтлс, выражающим тепловой поток от воды в атмосферу сквозь снежно-ледяную толщу. Допускаемая при такой замене неточность, являющаяся следствием неучета части солнечной радиации, проникающей в воду, становится существенной лишь для условий весны, когда после схода снежного покрова некоторая часть солнечной радиации начинает проникать сквозь лед в воду. Если уравнение теплового баланса составляется для годового периода, то составляющие Sтд (теплообмен с дном) и Sл (тепло, выделяемое при образовании льда или затрачиваемое при его таянии) в него не войдут, так как в течение года теплоотдача дну компенсируется приходом тепла от него, а тепло, выделяемое при образовании льда, компенсируется затратами тепла при его таянии. Для периода весеннего снеготаяния уравнение теплового баланса снежного покрова сокращается до вида где Sсн - итоговый приход тепла к снегу. В этом случае теплоприход от почвы обычно невелик и им можно пренебречь. Приток тепла за счет жидких осадков также достаточно мал и может не приниматься во внимание. Обычно не учитывается и тепло, расходуемое на изменение температуры снега. При составлении уравнения теплового баланса все его составляющие должны быть выражены в одинаковых тепловых единицах в виде количества тепла (кал, ккал) или в форме теплового потока, отнесенного к единице поверхности [кал/(см2*сут), кал/(см2*год)].
Дата добавления: 2015-07-13; Просмотров: 1832; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |