Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема. Многокритериальные задачи оптимизации




Системы поддержки решений

Базы знаний и экспертные системы

Второе направление – создание баз знаний и экспертных систем. В настоящее время это, пожалуй, главный путь движения к "искусственному интеллекту".

Экспертные системы имеют широкие перспективы: известны их многочисленные практические реализации в разнообразных предметных областях. Некоторые важные принципы организации экспертных систем, учитывающие расплывчатость терминов естественного языка, были заложены Д.А. Поспеловым ещё в системах ситуационного управления.

Если первое направление ориентировано на полную автоматизацию хорошо формализованных задач, то второе – на создание систем, накапливающий опыт экспертов и, по существу, впоследствии заменяющих самих экспертов. В третьем современном направлении развития человеко-машинных систем выбора делается основной акцент на участие самого лица, принимающего решения, в попытках формализовать задачу выбора, в самостоятельном сравнении и оценивании с помощью ЭВМ различных альтернатив разными способами.

Это третье направление представлено системами "интерактивной оценки решений" и особенно "системами поддержки решений" (DSS – Decision Support Systems).

Системы поддержки решений ориентированы не на автоматизацию функций лица, принимающего решения, а на предоставление ему помощи в поиске хорошего решения. Конечно, в математическое и программное обеспечение систем поддержки решений входят и формализованные процедуры, которые лицо, принимающее решения, может использовать в любой нужный ему степени.

 

Некоторые определения и понятия.

Принятие решения представляет собой выбор одного из некоторого множества рассматриваемых вариантов [Э. Мишук. Методы принятия технических решений].

Оптимальные варианты в некотором наборе называются выбором [Многокритериальная оптимизация. Б. Березовский].

Теория принятия решений (ТПР) – это математическая дисциплина, призванная помогать человеку вырабатывать "разумное" решение в трудных ситуациях.

Теория принятия решений – область исследования, вовлекающая понятия и методы математики, статистики, экономики, менеджмента и психологии; изучает закономерности выбора людьми путей решения разного рода задач, а также исследует способы поиска наиболее выгодных из возможных решений (из Википедии).

 

Общие сведения о многокритериальных задачах оптимизации

 

До сих пор мы рассматривали задачи оптимизации, где ясен критерий (показатель эффективности) по которому проводится оценка эффективности проектируемого объекта, т.е. требуется обратить в min (max) один единственный показатель. К сожалению, такие задачи на практике встречаются редко. Когда идёт речь о проектировании таких объектов как самолёт, технологический процесс, то их эффективность, как правило, не может быть полностью оценена с помощью единственного показателя. Приходится рассматривать дополнительные критерии (показатели эффективности). Чем больше критериев качества вводится в рассмотрение, тем более полную характеристику достоинств и недостатков проектируемого объекта можно получить. Таким образом, задачи проектирования сложных систем всегда многокритериальны, так как при выборе наилучшего варианта приходится учитывать много различных требований, предъявленных к системе (объекту). Например, при проектировании самолёта учитывают следующие показатели: скорость, радиус действия, боевой потолок, полезная нагрузка.

Впервые проблема многокритериальной оптимизации возникла у итальянского экономиста В. Парето при математическом исследовании товарного объёма. В дальнейшем интерес к проблеме векторной оптимизации усилился в связи с разработкой и широким использованием вычислительной техники в работах всё тех же экономистов-математиков. И уже позднее стало ясно, что многокритериальные задачи возникают не только в экономике, но и в технике: например, при проектировании технических систем, при оптимальном проектировании интегральных схем, в военном деле и т.д.

Прежде чем сформулировать задачу векторной оптимизации (ЗВО) введём и рассмотрим некоторые понятия.




Поделиться с друзьями:


Дата добавления: 2017-01-13; Просмотров: 387; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.