Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные принципы и закономерности формирования ЦНС в онтогенезе




Основные принципы развития ЦНС. В процессе онтогенеза ЦНС, согласно П.К. Анохину, происходит последовательное образование функциональных систем, обеспечивающих необходимые на данном этапе онтогенеза полезные для организма приспособительные результаты, причем, в этом развитии отражен общий биологический закон – филогенетически более старые части мозга развиваются раньше, чем молодые, которые отстают в развитии. На ранних стадиях внутриутробного развития нервный контроль функций осуществляется главным образом спинным мозгом, в последующем, на 7–10 неделе контроль переходит к продолговатому мозгу, а с 13–14 недели – к среднему мозгу. Кортиколизация контроля происходит уже на постнатальном этапе развития.

Развитие ЦНС во внутриутробном периоде регулируется, главным образом, генетическими и гормональными (йодсодержащие гормоны щитовидной железы, стероидные гормоны) факторами. В постнатальном периоде ведущую роль в развитии играют потоки афферентной импульсации с различных рецепторов, которые создаются в процессе воспитания и обучения ребенка

Развитие рефлекторных функций различных отделов мозга зависит от становления их морфологических (развитие нейронов, миелинизация волокон, образование связей между нейронами и др.) и функциональных (установление соответствующих величин лабильности, хронаксии, МП, ПД и др.) особенностей. Трудно говорить о преобладании каких-то отдельных факторов, важно их единство на определенном этапе развития. Связывая появление различных рефлекторных реакций с развитием того или иного отдела головного мозга, необходимо иметь в виду, что в их осуществлении принимают участие и другие отделы центральной нервной системы.

Закономерности формирование ЦНС в онтогенезе. Формирование структур центральной нервной системы (нейруляция), является одним из первых процессов гистогенеза, который начинается уже в середине первого месяца эмбрионального развития. (Рис) В этот период, в середине быстро растущего полого зародыша образуется плоская клеточная пластинка, называемая эмбриональным диском. Эта пластинка составляет часть одного из трех основных зародышевых листков - эктодермы, которая дает также начало коже. Вскоре после своего появления эмбриональный диск утолщается и разрастается вдоль средней линии, на этой стадии в нем уже можно распознать первичную нервную пластинку. Нервная пластинка продолжает быстро расти, ее края начинают утолщаться, приподниматься, сближаться, и срастаются по средней линии, образуя нервную трубку.

На переднем конце трубки (на том конце, где впоследствии образуется голова), возникают три первичных мозговых пузыря. Из каждого пузыря развивается один из трех основных отделов мозга: передний, средний или задний мозг. Остальная часть нервной трубки становится спинным мозгом. Во время сворачивания нервной трубки некоторые клетки остаются вне ее, и из них формируется нервный гребень, который дает начало периферической нервной системе.

Вскоре после формирования трех первичных пузырей отмечаются первые признаки развития глаз. Затем наступает первый этап серии изгибов, которые помогают еще яснее разграничить основные структурные единицы, а также подразделить широкие внутренние полости, которые в конечном итоге будут мозговыми желудочками.

Следующий важный шаг по пути специализации происходит тогда, когда большой пузырь переднего мозга подразделяется на конечный мозг, из которого позже разовьется вся кора больших полушарий, и промежуточный мозг, из которого будут образованы таламус и гипоталамус.

 

 

 

Конечный мозг проходит затем еще три стадии раннего развития. Прежде всего, он дает начало обонятельным долям мозга, гиппокампу и другим соседним областям, которые лежат вокруг краев развивающегося конечного мозга. Это и будет лимбическая система, расположенная, как уже говорилось, вдоль внутренней кромки коры.

На второй стадии происходит утолщение стенок переднего мозга. Массы растущих внутри них клеток это базальные ганглии, из которых впоследствии разовьются такие структуры, как хвостатое ядро, бледный шар и скорлупа, играющие важнейшую роль в координации работы систем сенсорного и двигательного контроля, а также миндалина (миндалевидное ядро) столь же важный центр интеграции сенсорных сигналов и внутренних адаптивных реакций.

Третья стадия, развития конечного мозга включает формирование коры больших полушарий со всеми ее специализированными частями.

Так как обонятельные и лимбические структуры имеются в мозгу даже очень примитивных позвоночных животных, эту область коры называют палеокортексом или древней корой.

Кора, развивающаяся на третьей стадии, носит название неокортекс или новой коры. Когда неокортекс у приматов достигает максимальной скорости роста (около 250 тыс. клеток в минуту), поверхность его образует складки мозговые извилины. Это позволяет намного увеличить объем корковой ткани без соответствующего увеличения общих размеров мозга.

Дальнейшее развитие нервной системы обеспечивается, прежде всего, двумя существенными аспектами этого процесса: эмбриологическими перестройками, ведущими к закреплению основных функций (к функциональной детерминации), и процессами клеточной дифференцировки.

Функциональная детерминация обеспечивает обособление прежде всего сенсорных и двигательных зон будущих отделов ЦНС. Процессы клеточной дифференцировки приводят к формированию трехслойной нервной трубки. Ее слои образуют различные типы нейронов и их отростков в формирующихся отделах ЦНС. Такое трехслойное строение можно увидеть на всех уровнях от спинного до конечного мозга.

В общем виде можно сказать, что все части мозга в своем развитии проходят следующие основные стадии:

· Клетки нервной пластинки детерминируются как будущие нейроны того или иного общего типа.

· Клетки детерминированного участка начинают делиться.

· Эти клетки мигрируют к местам их промежуточного или окончательного назначения.

· Достигнув места своей окончательной локализации, все еще незрелые нейроны начинают собираться в группы, из которых позже разовьются «ядра» взрослой нервной системы.

· Эмбриональные нейроны, образующие скопления, перестают делиться и начинают формировать соединительные отростки.

· Это приводит к раннему образованию связей и обеспечивает возможность синтеза и выделения нейромедиаторов.

· В конце концов «правильные» связи стабилизируются, а клетки, связи которых оказались «неудачными» или слишком малочисленными, отмирают. Этот процесс известен как «запрограммированная гибель клеток».

Число нейронов в формирующейся ЦНС достигает максимума к 20 – 24-й неделе внутриутробного развития, и уже не увеличивается до пожилого возраста. В то же время размеры нейронов, количество отростков и функционирующих синапсов после рождения увеличиваются. Изменяются электрофизиологические характеристики нейронов. Так, например, возрастает их мембранный потенциал, от 50 мВ у новорожденных до 60-70 мВ у взрослых. С возрастом снижается длительность потенциала действия и возрастает его амплитуда, повышается частота ритмической активности нейрона. У детей первого года жизни нервные клетки обладают низкой возбудимостью и лабильностью, поэтому у них легко развивается запредельное торможение, эти дети быстро переходят из бодрствующего состояния в сон.

В синапсах повышается интенсивность образования медиатора, возрастает число рецепторов на постсинаптической мембране, увеличивается скорость синаптической передачи, повышается лабильность. Вначале формируются синапсы спинного мозга, в последующем – синапсы других отделов, включая кору больших полушарий.

Важнейшим механизмом созревания ЦНС является миелинизация нервных структур. В различных отделах ЦНС миелинизация совершается гетерохронно. Она начинается внутриутробно, а окончательно завершается к 30 – 40 годам. Миелинизация нервных волокон осуществляется в центробежном направлении, отступая несколько микрон от тела клетки к периферии нервного волокна. Отсутствие миелиновой оболочки ограничивает функциональные возможности нервного волокна и делает работу ЦНС слабо координированной.

Миелинизация некоторых спиномозговых и черепно-мозговых нервов начинается уже на 4 месяце внутриутробного развития. Первыми подвергаются миелинизации передние, двигательные корешки спинного мозга, затем – задние, чувствительные корешки. Двигательные волокна к моменту рождения практически полностью миелинизированны, окончательная миелинизация чувствительных нервов растягивается на период от 3 месев до 3 лет после рождения. К моменту рождения миелинизированы практически все проводящие пути спинного мозга, за исключением пирамидных.

Ветви лицевого нерва, иннервирующие область губ, миелинизируются на 21–24-й неделе внутриутробного развития, что указывает на раннее формирование морфологической основы сосательного рефлекса, жизненно необходимого для новорожденного.

После рождения в первую очередь миелинизируются периферические нервы, затем – волокна спинного мозга, стволовой части головного мозга, мозжечка и значительно позже – волокна коры больших полушарий.

Основная часть черепно-мозговых нервов миелинизируются к 1,5 – 2 годам, слуховые нервы завершают этот процесс к 2 годам, зрительные и языкоглоточные – к 3 – 4 годам. В среднем к 3 годам основная масса нервных волокон миелинизирована, остальные завершают этот процесс к 6 годам. Миелинизация тангенпиальных путей коры больших полушарий завершается к 30 – 40 годам.

В процессе миелинизацци происходит концентрация ионных каналов в области перехватов Ранвье, повышаются возбудимость, проводимость и лабильность нервных волокон. Так, у новорожденных нерв способен проводить 4 – 10 имп/с, в то время как у взрослых – 300 – 1000 имп/с. Скорость проведения возбуждения по нерву у взрослых в 2 раза выше, чем у новорожденных.

 




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 3466; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.