Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расстроенный врач и больной гений 3 страница




Одно слово в заглавии не оправданно: «новое» предполагает, что имеются «старые» доказательства. Гаусс дал первое строгое доказательство этой фундаментальной теоремы в алгебре. Но чтобы не обижать прославленных предшественников, утверждавших, что у них имелись доказательства — которые все оказались ошибочными, — Гаусс представил свое выдающееся достижение как всего лишь самое свежее доказательство, опирающееся на новые (то есть правильные) методы.

Эта теорема получила известность как Основная Теорема Алгебры. Гаусс считал ее настолько важной, что дал в общей сложности четыре доказательства, причем последнее — когда ему было 70 лет. Лично он не испытывал никаких колебаний или сомнений по поводу комплексных чисел: они играли значительную роль в его мыслительном процессе, и впоследствии он сформировал собственное объяснение их смысла. Однако он старался избегать разногласий. С годами он стал замалчивать многие из своих оригинальных идей — неэвклидову геометрию, комплексный анализ и строгий подход к комплексным числам, — потому что не хотел вызывать то, что он называл «плачем беотийцев».

 

Гаусс не ограничивался чистой математикой. В начале 1801 года итальянский священник и астроном Джузеппе Пьяцци открыл новую планету или то, что ему представлялось планетой, — тусклое пятно света в телескопе, от ночи к ночи менявшее свое положение на фоне звезд, что было верным признаком принадлежности тела к Солнечной системе. Планете должным образом дали имя Церера[21], но на самом деле это оказался астероид — первый открытый астероид в истории. Не успел Пьяцци обнаружить новый мир, как тут же потерял его в блеске Солнца. Он сумел сделать так мало наблюдений, что астрономы не могли вычислить орбиту нового тела и беспокоились, что не найдут его, когда оно снова выйдет из-за Солнца.

Это была задача, достойная Гаусса, и он охотно за нее взялся. Он изобрел улучшенные способы определения орбит исходя из малого числа наблюдений и предсказал, где должна появиться Церера. Когда так и произошло, молва о Гауссе распространилась повсеместно. Путешественник и естествоиспытатель Александр фон Гумбольдт попросил Пьера-Симона де Лапласа — специалиста по небесной механике — назвать величайшего математика в Германии и получил ответ: «Пфафф». Когда недоумевающий Гумбольдт спросил: «А Гаусс?» — Лаплас ответил: «Гаусс — величайший математик в мире».

К сожалению, новоявленное светило отвлекло его от чистой математики на длинные вычисления для расчета орбиты, что можно было считать растратой его неординарных способностей. Не в том дело, что небесная механика не важна, — просто эту работу могли бы проделать и другие, менее талантливые математики. С другой стороны, из-за этого его дальнейшая жизнь полностью устроилась. Гаусс уже некоторое время искал постоянное место работы, которое оставляло бы возможность для общественного служения, с тем чтобы отдать должное своему покровителю — герцогу. Его работа о Церере привела к тому, что он стал директором Геттингенской обсерватории, и этот пост он занимал всю свою научную жизнь.



В 1805 году он женился на Иоанне Остхофф. В письме к Бойяи он так описывал свою новую жену: «Прекрасное лицо Мадонны, зерцало мира и здоровья, нежные, несколько мечтательные глаза, безупречная фигура — это одна сторона; яркий ум и развитая речь — это другая; но мягкая, безмятежная и целомудренная душа ангела, не причиняющая зла ни одному созданию, — это лучшее». Иоанна родила ему двоих детей, но в 1809 году умерла при родах, и убитый горем Гаусс «закрыл ее ангельские глаза, в которых я видел свой рай последние пять лет». Он начал страдать от одиночества, впал в депрессию, и жизнь уже никогда не была для него прежней. Он нашел новую жену — лучшую подругу Иоанны Минну Вальдек, но брак был не самым счастливым, несмотря на рождение еще троих детей. Гаусс постоянно спорил с сыновьями, а дочерям указывал, что им следует делать, и молодым людям настолько надоело это терпеть, что они уехали из Европы в Соединенные Штаты, где в дальнейшем преуспели.

Вскоре после начала своего директорства в Геттингене Гаусс вернулся к старой идее — возможности нового типа геометрии, которая удовлетворяла бы всем эвклидовым аксиомам, кроме аксиомы о параллельных прямых. В конце концов он пришел к убеждению, что логически непротиворечивые неэвклидовы геометрии возможны, но так и не опубликовал свои результаты из опасений, что их сочтут слишком радикальными. Янош Бойяи — сын его старого друга Вольфганга — позднее сделал аналогичные открытия, но Гаусс не счел возможным похвалить его работу, потому что сам предвосхитил многое из сделанного им. Еще некоторое время спустя, когда Николай Иванович Лобачевский независимо переоткрыл неэвклидову геометрию, Гаусс сделал его членом-корреспондентом Геттингенской Академии, но опять не высказал никакого публичного одобрения.

Годы спустя, по мере того как математики более подробно изучили эти новые геометрии, их стали интерпретировать как геометрии «геодезических» — кратчайших — путей на искривленных поверхностях. Если поверхность имеет постоянную положительную кривизну, как сфера, то геометрия называется эллиптической. Если кривизна постоянна и отрицательна (поверхность в каждой своей точке по форме напоминает седло), то это гиперболическая геометрия. Эвклидова геометрия соответствует нулевой кривизне — плоскому пространству. Эти геометрии можно охарактеризовать их метрикой — формулой для расстояния между двумя точками.

Эти идеи могли привести Гаусса к более общему исследованию искривленных поверхностей. Он вывел прекрасную формулу для величины кривизны и доказал, что она дает один и тот же результат в любой системе координат. В такой формулировке кривизна не обязательно должна быть постоянной: она может изменяться от точки к точке.

В зрелом возрасте Гаусс обратился к практическим применениям — вещь, нередкая среди математиков. Он консультировал несколько землемерных проектов, самым большим из которых была триангуляция области Ганновера. Он активно участвовал в полевых работах, а потом анализировал данные. Для облегчения этих работ он изобрел гелиотроп — прибор для обмена сигналами в отраженном свете. Но когда его стало подводить сердце, он прекратил занятия геодезией и решил провести оставшиеся годы в Геттингене.

В тот несчастливый для Гаусса период молодой норвежец по имени Абель написал ему о невозможности решения уравнения пятой степени в радикалах, но не получил ответа. Вероятно, Гаусс был слишком подавлен даже для того, чтобы взглянуть на статью.

Около 1833 года Гаусс заинтересовался магнетизмом и электричеством. Совместно с физиком Вильгельмом Вебером он работал над книгой, озаглавленной «Общая теория земного магнетизма», которая вышла в 1839 году. Они также изобрели телеграф, связавший Гауссову обсерваторию с физической лабораторией, где работал Вебер, но провода непрерывно рвались, и другие изобретатели предложили более практичный проект. Вебера выгнали из Геттингена вместе с шестью другими учеными из-за их отказа принести присягу новому королю Ганновера Эрнсту Августу. Гаусса это сильно расстроило, но его политический консерватизм и нежелание «поднимать волну» не позволили ему выступить с каким-либо публичным протестом, хотя в кулуарах он и пытался поддержать Вебера.

В 1845 году Гаусс написал докладную записку по поводу пенсионного фонда для вдов геттингенских профессоров, в котором проанализировал возможное влияние резкого увеличения числа членов фонда. Он вкладывал деньги в правительственные фонды и железнодорожные акции и составил порядочное состояние.

После 1850 года, страдая от проблем с сердцем, Гаусс сократил объем работы. Для нашего рассказа наиболее важным событием этого времени была Habilitation , диссертация его ученика Георга Бернхарда Римана. (В немецкой академической системе эта диссертация — вторая степень после кандидатской[22].) Риман обобщил работу Гаусса о поверхностях в многомерных пространствах, которые он назвал многообразиями. В частности, он расширил концепцию метрики и нашел формулу для кривизны многообразия. По существу, он создал теорию искривленных многомерных пространств. Позднее эта идея оказалась основополагающей для работ Эйнштейна по гравитации.

Гаусс, за которым теперь постоянно присматривал врач, посетил публичную лекцию Римана по этому вопросу и был глубоко впечатлен. По мере того как его здоровье ухудшалось, он проводил все больше времени в постели, но продолжал писать письма, читать и управлять своим капиталом. В начале 1855 года Гаусс мирно скончался во сне. Это был величайший в мире математический ум из всех известных.

 

Глава 6

 

Первый значительный шаг вперед после «Великого искусства» Кардано был сделан примерно в середине восемнадцатого столетия. Хотя математики Возрождения научились решать уравнения третьей и четвертой степеней, их методы, по существу, сводились к ряду трюков. Каждый такой трюк успешно работал, но, как представлялось, скорее из-за серии совпадений, нежели по какой-либо систематической причине. Изучить и окончательно обосновать эту причину около 1770 года удалось двум математикам — Жозефу-Луи Лагранжу, уроженцу Италии, всегда считавшему себя французом, и Александру-Теофилу Вандермонду — французу вне всякого сомнения.

Вандермонд родился в Париже в 1735 году. Отец хотел, чтобы он стал музыкантом, и Вандермонд достиг совершенства в игре на скрипке и ступил на путь музыкальной карьеры, но в 1770 году заинтересовался математикой. Его первая математическая публикация была посвящена симметричным функциям корней многочлена — алгебраическим формулам типа суммы всех корней, которые не меняются, если корни поменять местами. Наиболее оригинальной частью его работы было доказательство, что уравнение xn − 1 = 0, связанное с правильным п- угольником, можно решить в радикалах, если n меньше или равно 10. (На самом деле оно разрешимо в радикалах для любого n .) Великий французский аналитик[23]Огюстен-Луи Коши позднее ссылался на Вандермонда как на первого, кто осознал, что к задаче решения уравнений в радикалах можно применить симметрические функции.

В руках Лагранжа эта идея стала отправной точкой для атаки на все алгебраические уравнения.

 

Лагранж родился в итальянском городе Турине[24]и был наречен Джузеппе Лодовико Лагранджиа. Семья имела французские корни: прадед сначала был капитаном французской кавалерии, а потом переехал в Италию и поступил на службу к герцогу Савойскому. Еще в ранней молодости Джузеппе начал писать свою фамилию как «Лагранж», в качестве имени при этом используя Лодовико или Луиджи. Его отец был казначеем в Министерстве общественных работ и укреплений в Турине; мать Тереса Гроссо была дочерью врача. Лагранж был первым из их одиннадцати детей, лишь двоим из которых довелось дожить до зрелых лет.

Семья относилась к высшим слоям итальянского общества, однако в результате некоторых неудачных вложений Лагранжи оказались практически разорены. Было решено, что молодой Лагранж будет изучать право, и он поступил в Туринский университет. Ему нравились право и классические предметы, а математические занятия, на которых в основном преподавалась эвклидова геометрия, наводили на юношу тоску. Однако попавшаяся ему как-то раз книга по алгебраическим методам в оптике, написанная английским астрономом Эдмондом Галлеем, самым решительным образом переменила его мнение о математике. Лагранж направился по пути, который и стал определяющим в его ранних исследованиях, — применение математики к механике и в особенности к небесной механике.

Он женился на своей кузине Виттории Конти. «Моя жена, приходящаяся мне кузиной (и даже жившая в течение долгого времени в нашем семействе), — прекрасная хозяйка и совершенно не требовательна», — писал он своему другу, также математику, Жану ле Рон д'Аламберу. Он также доверительно сообщал ему, что вообще не собирается иметь детей — так оно и вышло.

Лагранж занял должность в Берлине, написал много научных статей и несколько раз становился обладателем ежегодной премии Французской академии: в 1772 году он получил награду вместе с Эйлером, в 1774-м был удостоен ее за работу по динамике Луны, а в 1780-м — за работу о влиянии планет на орбиты комет. Другим его пристрастием была теория чисел. В 1770 году он доказал теорему, представляющую собой классику жанра, — теорему о четырех квадратах, согласно которой всякое положительное целое число представимо в виде суммы четырех квадратов. Например, 7 = 22 + 12 + 12 + 12, 8 = 22 + 22 + 02 + 02 и так далее.

Он стал членом Французской академии наук и перебрался в Париж, где и провел всю оставшуюся жизнь. Он полагал, что разумно подчиняться законам страны проживания даже в случае личного с ними несогласия, — точка зрения, которая, возможно, помогла ему избежать участи многих других интеллектуалов во время Французской революции. В 1788 году Лагранж опубликовал свой шедевр — «Аналитическую механику», где переосмыслил механику как ветвь анализа. Он гордился тем, что в его объемистой книге вообще нет рисунков; в его глазах это делало изложение логически более строгим.

В 1792 году Лагранж женился второй раз, на дочери астронома Рене-Франсуазе-Аделаиде ле Моннье. В августе 1793 года, во время Террора, Академию закрыли; единственной ее частью, не прекратившей функционировать, была Комиссия мер и весов. От работы были отстранены многие ведущие ученые — химик Антуан Лавуазье, физик Шарль Огюстен Кулон, а также Пьер Симон Лаплас. Лагранж стал новым председателем Комиссии мер и весов.

К этому моменту у него стали возникать проблемы из-за его итальянского происхождения. Революционное правительство провело закон, требовавший ареста каждого иностранца, родившегося во враждебной стране. Лавуазье, тогда еще сохранявший свое влияние, добился, чтобы Лагранжа исключили из списков тех, кто подпадал под действие нового закона. Вскоре революционный трибунал приговорил Лавуазье к смерти, и на следующий же день его гильотинировали. Лагранж заметил, что «только мгновение потребовалось, чтобы пала его голова, но сотни лет не хватит, чтобы появилась другая такая».

При Наполеоне Лагранж получил целый ряд почестей: он стал кавалером Ордена почетного легиона, в годы Империи, в 1808 году, ему был пожалован титул графа, а в 1813-м он стал кавалером Большого Креста Императорского Ордена Содружества. Через неделю после получения Большого Креста он скончался.

 

В 1770 году — в год открытия теоремы о четырех квадратах — Лагранж взялся за написание обширного трактата по теории уравнений, говоря при этом: «В данном мемуаре я предполагаю исследовать различные методы, найденные к настоящему моменту для алгебраического решения уравнений, свести их к общим принципам и объяснить a priori , почему эти методы приводят к успеху в степени три и четыре, но непригодны для старших степеней». Как выразился Жан-Пьер Тиньоль в своей книге «Теория Галуа алгебраических уравнений», Лагранж «явным образом намеревался определить не только как, но и почему эти методы работают».

Лагранж добился гораздо более глубокого понимания методов эпохи Возрождения, чем сами их изобретатели; он даже доказал, что найденную им общую схему, объяснявшую их успехи, нельзя распространить на степени пять и выше. Тем не менее он не смог сделать следующего шага — выяснить, возможно ли какое-нибудь решение в этих случаях. Вместо этого он сообщает нам, что его результаты «окажутся полезными для тех, кто захочет заняться решением уравнений высших степеней, поскольку снабдят их различными взглядами на этот вопрос и, главное, предохранят от большого числа ложных шагов и попыток».

Лагранж обратил внимание, что все специальные приемы, которые использовали Кардано, Тарталья и другие, основывались на одном методе. Вместо того чтобы непосредственно искать корни заданных уравнений, они пытались свести задачу к решению некоторого вспомогательного уравнения, корни которого связаны с исходными, однако отличаются от них.

Вспомогательное уравнение в случае кубического уравнения было более простым — квадратным. Эту «разрешающую квадрику» можно было решить вавилонскими методами; решение же кубического уравнения затем восстанавливалось путем извлечения кубического корня. Именно такова структура формулы Кардано. Для уравнения четвертой степени вспомогательное уравнение тоже было более простым — кубическим. Эту «разрешающую кубику» можно было решить методом Кардано; решение же уравнения четвертой степени затем восстанавливалось извлечением корня четвертой степени — другими словами, кратным извлечением квадратного корня. Именно такова структура формулы Феррари.

Можно представить себе растущее воодушевление Лагранжа. Если подобная закономерность сохранится, то уравнение пятой степени будет иметь «разрешающую квадрику», которую можно будет решить методом Феррари, а затем извлечь корень пятой степени. И процесс может продолжиться: уравнение шестой степени будет иметь разрешающую квинтику, которую можно будет решить с помощью того, что получит известность как метод Лагранжа. Он сможет решить уравнения любой степени.

Суровая реальность вернула его на землю. Разрешающее уравнение для уравнения пятой степени оказалось не квартикой, а уравнением более высокой степени — шестой. Тот самый метод, который позволил упростить кубику и квартику, привел к усложнению квинтики.

Достичь прогресса в математике посредством замены сложной задачи на еще более сложную невозможно. Объединенный метод Лагранжа отказал на уравнении пятой степени. Тем не менее Лагранж не доказал, что уравнение пятой степени неразрешимо, так как могли существовать и какие-то другие методы.

В самом деле, почему бы и нет?

Для Лагранжа это был риторический вопрос. Однако один из его последователей отнесся к этому вопросу серьезно и ответил на него.

 

Его звали Паоло Руффини, и когда я говорю, что он «ответил» на риторический вопрос Лагранжа, я слегка лукавлю. Он полагал, что ответил, и его современники не обнаружили в его ответе ничего неверного — отчасти потому, что никогда не воспринимали его работы настолько серьезно, чтобы в самом деле подвергнуть их всесторонней проверке. Руффини прожил свою жизнь в убеждении, что доказал неразрешимость уравнения пятой степени в радикалах. Только после его смерти оказалось, что в его доказательстве имеется значительный пробел. Его легко было просмотреть среди многих и многих страниц запутанных вычислений; проблема состояла в некотором «очевидном» допущении — таком, что он даже не заметил, что это предположение делалось.

Как знает из собственного горького опыта каждый профессиональный математик, очень трудно заметить, что вы делаете неявное предположение, — трудно в первую очередь потому, что оно делается неявно.

Руффини родился в 1765 году в семье врача. В 1783-м он поступил в университет Модены, где изучал медицину, философию, литературу и математику. Геометрии он учился у Луиджи Фантини, а анализу — у Паоло Кассиани. Когда Кассиани переехал, чтобы занять при семействе Эсте должность управляющего их обширными владениями, Руффини — в тот момент еще студент — взял на себя курс анализа, который читал Кассиани. В 1788 году он получил степень по философии, медицине и хирургии, а степень по математике — в 1789-м. Вскоре после этого он сменил на профессорской должности Фантини, зрение которого быстро ухудшалось.

Ход его научных занятий был прерван течением мировых событий. Разбив в 1796 году войска Австрии и Сардинии, Наполеон Бонапарт обратил свой взгляд на Турин и захватил Милан. Вскоре он оккупировал Модену, и Руффини пришлось принять участие в политической деятельности. Вначале он собирался вернуться в университет в 1798 году, но по религиозным соображениям отказался приносить присягу республике. Воспоследовавшая незанятость оставила ему больше времени на исследования, и он целиком сосредоточился на все еще не урегулированном вопросе об уравнениях пятой степени.

Руффини убедил себя, что есть веская причина, по которой никому не удавалось найти решение: решения попросту не существует. А именно — нет формулы, включающей в себя только радикалы (а не что-то более эзотерическое), которая давала бы решение общего уравнения пятой степени. В своей двухтомной «Общей теории уравнений», опубликованной в 1799 году, он утверждал, что умеет это доказывать, заявляя, будто «алгебраическое решение общих уравнений степени большей четырех невозможно. Перед вами очень важная теорема, которую, как я полагаю, я, судя по всему, в состоянии доказать. Представить ее доказательство — главная цель публикации данного тома. Основы моего доказательства заложил своими высокими рассуждениями бессмертный Лагранж». Доказательство заняло более 500 страниц, в основном заполненных непривычной математикой. Другие математики нашли его несколько устрашающим. Даже в наши дни никто не горит желанием продираться через длинные технические доказательства, если только на то нет особых причин. Если бы Руффини сообщил, что нашел решение уравнения пятой степени, то его коллеги наверняка не поленились бы разобраться в его работе. Но можно понять их нежелание тратить сотни часов на то, чтобы вникнуть в отрицательный результат.

Особенно если учесть, что результат мог быть и неверным. Мало что раздражает так сильно, как нахождение ошибки на 499-й странице в 500-страничной книге по математике.

В 1801 году Руффини послал экземпляр Лагранжу, а по прошествии нескольких месяцев молчания — еще один экземпляр с припиской: «Если я допустил ошибку в каком-либо доказательстве, или если я утверждал что-то, что я считал новым, но оно в действительности таковым не является, или, наконец, если я написал бесполезную книгу, я умоляю вас откровенно высказаться по этому поводу». По-прежнему никакого ответа. Еще одна попытка в 1802 году. Ничего.

Несколько лет, прошедших без признания, Руффини воспринял как должное. Однако затем вместо ожидаемой славы стали распространяться неясные слухи, намекавшие, что в его «доказательстве» были ошибки. Поскольку же никто не объявил, в чем эти ошибки могли состоять, Руффини не имел шанса оправдаться. В конце концов он пришел к выводу — без сомнения, верному, — что доказательство было слишком сложным, и задался целью найти вариант попроще. Это ему удалось в 1803 году, когда он писал: «В настоящем мемуаре я попытаюсь доказать то же предложение, используя, как я надеюсь, менее трудную для понимания аргументацию, сохраняя при этом полную строгость». Новое доказательство было воспринято не лучше. Мир не был готов ни к прозрениям Руффини, ни к последующим доказательствам, опубликованным им в 1808 и 1813 годах. Однако он не оставлял усилий добиться от математического сообщества признания своей работы. Когда Жан Деламбр, предсказавший положение на небе планеты Уран, писал отчет о развитии математики за период начиная с 1789 года, он включил туда фразу «Руффини заявляет о доказательстве того, что решение уравнения пятой степени невозможно». Руффини незамедлительно ответил: «Я не только заявил о доказательстве, но и в самом деле это доказал».

Справедливости ради надо сказать, что небольшому числу математиков доказательство Руффини нравилось. Среди них был Коши, славившийся тем, что редко воздавал кому-либо по заслугам, если только эти заслуги не были его собственными. В 1821 году он писал Руффини: «Ваш мемуар по общему решению уравнений является работой, которая всегда представлялась мне заслуживающей внимания математиков и которая, по моему суждению, полностью доказывает невозможность решения алгебраических уравнений степени выше четвертой». Но похвала эта появилась уже слишком поздно.

Около 1800 года Руффини продолжал преподавать прикладную математику в городском военном училище. Он не оставлял и медицинской практики, причем среди его пациентов были люди от самых бедных до самых богатых. В 1814 году, после падения Наполеона, он стал ректором университета Модены. Политическая ситуация оставалась крайне сложной, и, несмотря на его высочайшую квалификацию и огромное уважение, которым он пользовался, а также репутацию безупречно честного человека, ему было весьма непросто оставаться на посту ректора.

В университете Модены Руффини одновременно заведовал кафедрами прикладной математики, практической медицины и клинической медицины. В 1817 году разразилась эпидемия тифа, и Руффини продолжал лечить своих пациентов, пока сам не заразился. Он выжил, но его здоровье было подорвано, и в 1819 году он оставил кафедру клинической медицины. Однако он никогда не прекращал научной работы и в 1820 году опубликовал статью о тифе, основанную на его собственном опыте и как врача, и как пациента. Он умер в 1822 году, всего около года спустя после того, как Коши письменно высоко отозвался о его работе по уравнениям пятой степени.

 

Одна из причин, по которой на работу Руффини смотрели несколько косо, могла состоять в ее новизне.

Как и Лагранж, он основывал свои исследования на концепции перестановки. Перестановка — это способ переупорядочить некоторый упорядоченный список. Самый расхожий пример перестановки — это перетасовка колоды карт. Цель в этом случае обычно состоит в достижении некоторого случайного, т.е. непредсказуемого, порядка. Число различных перестановок в колоде карт поистине огромно, так что вероятность предсказать появление того или иного порядка исчезающе мала.

В теории уравнений перестановки возникают потому, что корни данного многочлена можно рассматривать как список. Некоторые весьма фундаментальные свойства уравнений непосредственно связаны с эффектом перетасовки этого списка. Интуиция подсказывает, что уравнение «не знает», в каком порядке мы выписываем его корни, так что перестановка корней не должна приводить ни к каким серьезным различиям. В частности, коэффициенты уравнения должны быть полностью симметричными выражениями от корней — выражениями, которые не меняются, когда корни переставляют.

Однако, как ранее заметил и должным образом оценил Лагранж, определенные выражения от корней могут оказаться симметричными по отношению к некоторым, но не ко всем перестановкам. Эти «частично симметричные» выражения тесно связаны со всякой формулой для решения уравнения. Это свойство перестановок было известно коллегам Руффини. Гораздо менее известным было то, как систематически использовал Руффини другую идею Лагранжа — что можно «перемножить» две перестановки таким образом, что получится новая перестановка; для этого две данные перестановки надо выполнить одну за другой.

Рассмотрим три символа a, b и c . На них имеется шесть перестановок: abc, acb, bac, bca, cab и cba. Возьмем одну из них, скажем, cba. На первый взгляд это просто упорядоченный список из трех символов. Однако его можно также воспринимать как правило переупорядочения исходного списка abc. В данном случае правило выражается как «обращение порядка». И это правило можно применять не только к данному, но и вообще к любому списку. Применив его, скажем, к bca , получим acb. Так что можно придать смысл умножению cba×bca = acb.

Эту идею, занимающую центральное место в нашем рассказе, можно, наверное, выразить яснее, если нарисовать некоторые диаграммы. Приведем две диаграммы для перестановок, которые переупорядочивают abc в cba и в bca , как показано на рисунке.

 

 

Две перестановки символов a, b, c .

 

Можно скомбинировать два переупорядочения в одно, разместив эти картинки одну над другой. Существуют два способа это сделать, показанные на рисунке.

 

 

Умножение перестановок. Результат зависит от того, какая перестановка берется первой.

 

Теперь результат «умножения» двух перестановок виден просто из нижней строки, которая в данном случае (левый рисунок!) есть acb. Приняв это определение «умножения» (которое не совпадает с обычным правилом умножения чисел), можно придать смысл утверждению cba×bca = acb. Соглашение состоит в том, что первая перестановка в произведении располагается в нашей двухэтажной конструкции снизу. Это существенно, поскольку если поменять два этажа местами, то получится другой ответ. Правая картинка показывает, что, когда перестановки перемножаются в противоположном порядке, результат есть bca×cba = bac.

 

Суть доказательства невозможности, которое предложил Руффини, состояла в выработке условий, которым должно удовлетворять всякое уравнение пятой степени, корни которого можно выразить в радикалах. Если общее уравнение пятой степени не удовлетворяет этим условиям, то, значит, у него нет корней такого типа, и, следовательно, его нельзя решить никаким естественным обобщением методов, применимых к кубике и квартике.

Следуя Лагранжу, Руффини плотно занялся симметричными функциями корней и их связью с перестановками. Уравнение пятой степени имеет пять корней, а на пяти символах имеется 120 перестановок. Руффини осознал, что эта система перестановок должна обладать некоторыми структурными свойствами, наследуемыми из всякой гипотетической формулы для решений квинтики. Если эти свойства отсутствуют, то такой формулы быть не может. Это несколько напоминает выслеживание тигра в джунглях, растущих в густой грязи. Если тигр там действительно есть, он должен оставить ясные следы. Нет следов — нет тигра.

Используя математические закономерности этого нового вида умножения, Руффини смог доказать — по крайней мере к своему собственному удовлетворению, — что структура умножения на 120 перестановках не согласуется с симметричными функциями, которые должны существовать, если уравнение можно решить в радикалах. И он реально добился чего-то важного. До того как Руффини начал исследовать уравнения пятой степени, почти каждый математик в мире был уверен, что это уравнение можно решить — единственный вопрос состоял в том, как именно. Исключение составлял лишь Гаусс, который как-то обронил намек, что, по его мнению, решения не существует, — но он также заметил, что это не очень интересный вопрос (один из тех редких случаев, когда интуиция его подвела).





Дата добавления: 2017-01-14; Просмотров: 28; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:





studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ip: 54.80.180.248
Генерация страницы за: 0.015 сек.