Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Несостоявшийся солдат и хилый книжный червь 1 страница




Много позднее индийские математики поняли, что есть даже более важное число, предшествующее единице. На самом деле числа начинались не там. Они начинались в нуле, который теперь изображается символом 0. Еще позднее оказалось полезным ввести в обиход отрицательные числа — числа, меньшие чем ничто. Таким образом, с присоединением отрицательных, человечество изобрело систему целых чисел: …, −3, −2, −1, 0, 1, 2, 3, …. Но этим дело не закончилось[39]. Проблема с целыми числами состоит в том, что они не позволяют представить целый ряд полезных величин. Фермер, продающий зерно, например, может пожелать указать количество пшеницы как нечто между 1 мешком и 2 мешками. Если это будет примерно посередине между этими двумя мерами, то желаемое количество мешков равно 11/2. Или несколько меньше — 11/4, или, наоборот, больше — 13/4. Таким образом (с использованием самых разнообразных систем для их обозначения) были изобретены дроби. Дроби интерполируют между целыми числами. Достаточно сложные дроби могут интерполировать с исключительной точностью, в чем мы уже могли убедиться, рассматривал вавилонскую арифметику. Крепла уверенность, что любую величину можно представить в виде дроби. Но тут на сцену выходят Пифагор и носящая его имя теорема. Немедленное следствие этой теоремы состоит в том что длина диагонали единичного квадрата представляет собой число, квадрат которого равен в точности 2. Иными словами, диагональ имеет длину, равную квадратному корню из 2. Такое число обязано существовать, поскольку каждый может нарисовать квадрат, а у него, разумеется, есть диагональ, а она, без сомнения, имеет длину. Но, как осознал на свою беду Гиппас, чем бы ни был квадратный корень из 2, он не может точно выражаться в виде дроби. Это число иррациональное. Таким образом, потребовалось еще больше чисел для заполнения невидимых дыр между всеми возможными дробями.   В конце концов этот процесс вроде бы достиг конечной остановки. Греки предпочитали числовым схемам геометрию, но в 1585 году Вильгельм Молчаливый[40]назначил фламандского математика и инженера Симона Стевина из Брюгге учителем своего сына Морица Оранского. Стевин занимал должности инспектора плотин, начальника снабжения армии, а также министра финансов. Эти должности, в особенности две последние, убедили его в важности ведения бухгалтерского учета, и он позаимствовал системы, использовавшиеся в итальянских конторах. В поисках такого способа представлять дроби, который соединял бы в себе гибкость индо-арабских позиционных обозначений и высокую точность вавилонских шестидесятеричных дробей, Стевин предложил аналог вавилонской системы, но с основанием 10 вместо основания 60, — то есть десятичные дроби. Стевин опубликовал очерк, описывающий его новую систему обозначений. Он в достаточной мере осознавал проблемы маркетинга и включил утверждение, что его идеи успешно прошли «тщательные испытания людьми практической закалки, которые нашли их настолько полезными, что они добровольно отказались от своих собственных усовершенствований в пользу данного». Далее он утверждал, что его десятичная система «учит нас, что все вычисления, которые встречаются при ведении бизнеса, можно выполнить в одних только целых числах, не прибегая к помощи дробей». В обозначениях Стевина не использовалась современная десятичная запятая, нотам было нечто близкое. Там, где мы пишем «3,1416», Стевин писал бы 3     . Символ указывал на целое число, — на десятые, — на сотые и т.д. По мере того как люди привыкли к этой системе, они перестали писать , и т.д., оставив только знак , который мутировал в десятичную запятую. На самом деле с использованием десятичных дробей записать квадратный корень из двух нельзя — если только в ваши планы не входит продолжать эту запись без конца. Но равным образом нельзя записать в виде десятичной дроби и 1/3. Близким к 1/3 значением будет 0,33, но еще ближе 0,333, а сверх того лучше 0,3333 и так далее. Точное представление существует — тут мы употребим это слово новым для себя способом, — только если рассматривать бесконечную последовательность троек. Но если такое приемлемо, то можно в принципе точно записать и квадратный корень из двух. В том, как там устроены десятичные знаки, не видно никакого порядка, но, взяв достаточно большое количество этих знаков, можно получить число, квадрат которого настолько близок к числу 2, насколько пожелаете. Идея в том, что если взять все десятичные знаки, получится число, квадрат которого равен точно 2. После принятия «бесконечных десятичных дробей» система вещественных чисел стала полной. В ней оказалось возможным представить любое число, которое может потребоваться бизнесмену или математику, с любой желаемой точностью. Всякое измерение, которое только можно себе вообразить, давало результат, выразимый десятичной дробью. Если требовалось записать отрицательные числа, десятичная система с легкостью справлялась с этой задачей. Нужды ни в каких числах какого-либо другого сорта не возникало. Не осталось никаких пробелов, которые надо было бы заполнить.   Если не считать…. Те странные формулы Кардано для корней квадратного уравнения, казалось, пытались нам что-то сообщить, но что именно — оставалось крайне неясным. Если начать с совершенно, казалось бы, безобидного уравнения третьей степени — такого, где корень нам известен, — то формула не дает этот ответ в явном виде. Вместо этого она предлагает громоздкое предписание, включающее извлечение кубического корня из чего-то даже еще более громоздкого, и при этом требуется, казалось бы, невозможное — извлечение квадратного корня из отрицательного числа. Пифагорейцев ставил в тупик квадратный корень из двух, но квадратный корень из минус единицы казался еще более непостижимым. На протяжении нескольких сотен лет возможность придания разумного смысла квадратному корню из минус единицы периодически то посещала коллективное математическое сознание, то покидала его. Никто не понимал, могут ли такие числа существовать. Постепенно, однако, зрело осознание, что если бы они существовали, то были бы исключительно полезны. Первоначально такие «мнимые» величины использовались ровно для одной цели: указывать на задачи, не имеющие решения. Если вы желали найти число, квадрат которого равен минус единице, то формальное решение «квадратный корень из минус единицы» было мнимым — в смысле воображаемым, — поскольку такого решения не существовало. Не кто иной, как мыслитель Рене Декарт, именно так и утверждал. В 1637 году он проводил различие между «вещественными» числами и «мнимыми», настаивая, что присутствие мнимых величин означает отсутствие решения. Ньютон говорил то же самое. Но оба эти светила не принимали во внимание сделанное столетиями раньше наблюдение Бомбелли о том, что иногда мнимые величины указывают на наличие решения, — но только сигнал, который они подают, нелегко расшифровать. В 1673 году английский математик Джон Валлис — родившийся в Эшфорде, примерно в пятнадцати милях от моего родного города в графстве Кент — добился фантастического продвижения. Он обнаружил, что простой способ представления мнимых чисел — и даже «комплексных» чисел, которые соединяют в себе вещественные и мнимые — состоит в том, чтобы использовать точки на плоскости. Первым шагом является ныне вполне привычная концепция вещественной «числовой прямой» — прямой линии, простирающейся до бесконечности в обоих направлениях, с отметкой о посередине, направо от которой уходят вдаль положительные вещественные числа, а налево — отрицательные. Каждое вещественное число можно поместить на числовую прямую. Каждый следующий десятичный знак требует деления единицы длины на десять, затем на сто, тысячу и т.д. равных частей, но это не проблема. Положение чисел, подобных √2, можно указать с любой желаемой степенью точности — в данном случае где-то между 1 и 2, немного слева от 1,5. Число π живет немного справа от 3, и т.д.     Вещественная числовая прямая.   Но куда же отправить √−1? Места на вещественной числовой прямой для этого числа нет. Это число ни положительно, ни отрицательно, поэтому ему не место ни справа, ни слева от точки 0. Валлис поместил его где-то еще. Он ввел вторую числовую прямую, чтобы разместить на ней мнимые числа, т.е. числа, кратные i,[41]и расположил ее под прямым углом к вещественной числовой прямой. Это был в буквальном смысле образец «широкого подхода к делу». Две числовые прямые, вещественная и мнимая, должны пересекаться в точке 0. Совсем не сложно доказать, что если числа вообще имеют смысл, то 0 умножить на i должно равняться 0, так что начало отсчета на вещественной и мнимой прямых одно и то же.     Два экземпляра вещественной числовой прямой, расположенные под прямым углом.   Комплексная плоскость, согласно Валлису.   Комплексное число состоит из двух частей: одна вещественная, другая мнимая. Чтобы указать положение заданного числа на плоскости, Валлис предложил своим читателям отмерить вещественную часть вдоль горизонтальной «вещественной» прямой, а затем отмерить мнимую часть вдоль вертикального направления, то есть параллельно мнимой прямой.   Это предложение полностью решило вопрос о придании смысла мнимым и комплексным числам. Оно было простым, но эффективным — настоящей работой гения. Оно было целиком и полностью проигнорировано.   Несмотря на отсутствие общественного признания, открытие Валлиса, должно быть, как-то просочилось в математическое сознание, поскольку математики бессознательно начали использовать образы, непосредственно связанные с основной идеей Валлиса: комплексные числа живут не на прямой, а на комплексной плоскости. По мере того как математика становилась более разнообразной, математики переходили к вычислению все более сложных вещей. В 1702 году Иоганн Бернулли, решая некоторую задачу из анализа, столкнулся с проблемой вычисления логарифма комплексного числа. К 1712 году Бернулли и Лейбниц воевали по поводу следующего ключевого вопроса: чем является логарифм отрицательного числа? Если бы этот вопрос удалось решить, можно было бы найти логарифм любого комплексного числа, потому что логарифм квадратного корня из заданного числа равен просто половине его логарифма. Таким образом, логарифм числа i составляет половину логарифма числа −1. Но чему равен логарифм −1? Вопрос стоял просто. Лейбниц полагал, что логарифм числа −1 должен быть комплексным. Бернулли говорил, что вещественным. Бернулли основывал свое заключение на несложных выкладках из математического анализа; Лейбниц возражал, что ни сам метод, ни полученный ответ не имеют смысла. В 1749 году Эйлер разрешил это противоречие, всецело встав на сторону Лейбница. Бернулли, по его наблюдению, упустил кое-что из виду. Его выкладки из анализа носили такой характер, что ответ включал в себя добавление «произвольной постоянной». Полностью сосредоточившись на комплексном анализе, Бернулли молчаливо предполагал, что эта постоянная равнялась нулю. А она нулю не равнялась. Она была мнимой. Это упущение объясняло расхождение между ответами Бернулли и Лейбница. Темпы «комплексификации» математики нарастали. Все больше идей, появившихся при изучении вещественных чисел, распространялись на комплексные числа. В 1797 году норвежец по имени Каспар Вессель опубликовал метод представления комплексных чисел точками на плоскости. Каспар происходил из семьи священника и был шестым из четырнадцати детей. В то время в самой Норвегии университетов не было, но она находилась в унии с Данией, так что в 1761 году он отправился в Копенгагенский университет. Он и его брат Оле изучали право, причем Оле, чтобы пополнить семейный бюджет, подрабатывал землемером. Позднее Каспар стал помощником Оле. Работая землемером, Каспар изобрел способ представления геометрии на плоскости — в особенности линий и их направлений — в терминах комплексных чисел. В ретроспективе мы видим, что его идеи означали представление комплексных чисел в терминах геометрии на плоскости. В 1797 году он представил свою работу — первую и единственную свою научную статью по математике — Датской Королевской Академии. Едва ли кто-нибудь из ведущих математиков читал по-датски, и работа влачила «непрочитанное существование», пока через 100 лет ее не перевели на французский. Тем временем французский математик Жан-Робер Арган независимо предложил ту же идею и опубликовал ее в 1806 году. В 1811 году та же мысль, что комплексные числа можно рассматривать как точки на плоскости, — снова независимо — пришла в голову Гауссу. Названия «диаграмма Аргана», «плоскость Весселя» и «Гауссова плоскость» стали входить в обиход. Представители различных наций склонялись к использованию различных способов выражения. Завершающий шаг предпринял Гамильтон. В 1837 году, почти через триста лет после того, как из формул Кардано стала видна возможная польза от мнимых чисел, Гамильтон устранил геометрический элемент и свел комплексные числа к чистой алгебре. Его идея была проста; она неявно следовала из предложения Валлиса и в эквивалентной форме содержалась у Весселя, Аргана и Гаусса. Но никто из них не сделал ее явной. Алгебраически, утверждал Гамильтон, точку на плоскости можно отождествить с парой вещественных чисел — ее координатами (x, y). Если посмотреть на диаграмму Валлиса (или Весселя, или Аргана, или Гаусса), то станет ясно, что x есть вещественная часть числа, а y — его мнимая часть. Комплексное число x + iy «на самом деле» есть лишь пара (x, y) вещественных чисел. Можно даже выписать правила для сложения и умножения таких пар, причем основной шаг состоит в наблюдении, что поскольку число i соответствует паре (0, 1), произведение (0, 1)×(0, 1) должно равняться (−1, 0). По данному вопросу Гаусс также сообщает в письме к венгерскому геометру Вольфгангу Бойяи, что в точности та же мысль пришла ему в голову в 1831 году. Лис снова замел свои следы — причем опять никто ничего не заметил. Задача решена. Комплексное число — это в точности пара вещественных чисел, оперировать которыми надо согласно списку простых правил. Поскольку пара вещественных чисел уже заведомо столь же «вещественна», сколь и одно вещественное число, вещественные и комплексные числа равным образом связаны с реальностью, а название «мнимые» только сбивает с толку. Сегодняшние взгляды несколько отличаются от этого: сбивает с толку слово «вещественный». Как вещественные, так и мнимые числа равным образом представляют собой продукт человеческого воображения.   Реакцией на данное Гамильтоном решение задачи, стоявшей до этого в течение трех сотен лет, была полная тишина. Коль скоро математики уже включили понятие комплексных чисел в мощную последовательную теорию, страхи касательно существования комплексных чисел потеряли актуальность. Тем не менее использование пар чисел, как предлагал Гамильтон, оказалось очень важным. Хотя вопросу о комплексных числах перестал сопутствовать ажиотаж, идея о построении новых числовых систем из старых укоренилась в математическом сознании. Комплексные числа оказались полезны не только в алгебре и основах анализа. Они позволили сформулировать мощный метод решения задач о потоке жидкости или тепла, о гравитации и звуке — почти в каждой области математической физики. Но у них было одно существенное ограничение: с их помощью эти задачи решались в двумерном пространстве, тогда как мы живем в трехмерном. Некоторые задачи, такие как задача о движениях мембраны барабана или о течении тонкого слоя жидкости, можно свести к размерности два, что совсем не так уж плохо. Но математиков все больше раздражало, что их методы, основанные на комплексных числах, не удавалось распространить с плоскости на трехмерное пространство. Могли ли существовать еще не открытые расширения числовой системы на трехмерное пространство? Данная Гамильтоном формализация комплексных чисел как пары вещественных подсказывала подход к этой проблеме: постараться организовать числовую систему, основанную на тройках чисел (x, y, z). Проблема состояла в том, что до тех пор никто не работал с алгеброй, образованной тройками чисел. Гамильтон решил попробовать. Сложение троек не составляло проблемы: подсказка со стороны комплексных чисел состоит в том, что надо просто складывать соответствующие координаты. Такого типа арифметика, ныне известная как векторное сложение, подчиняется весьма симпатичным правилам, и имеется только один разумный способ ее реализации. Настоящей проблемой было умножение. Уже для комплексных чисел умножение устроено вовсе не как сложение: пары вещественных чисел не умножаются друг на друга путем раздельного перемножения первых и вторых компонент. Если вы все же захотите определить умножение таким образом, то произойдет масса неприятных вещей — но, главное, две фатальные неприятности. Первая состоит в том, что больше не будет квадратного корня из минус единицы. Вторая же состоит в том, что можно будет взять умножение ненулевых чисел и получить нуль. Такие «делители нуля» превращают в ад все обычные алгебраические методы, например методы решения уравнений. Для комплексных чисел подобные неприятности преодолеваются за счет выбора менее очевидного правила умножения в соответствии с рецептом Гамильтона. Но когда он попытался сделать нечто подобное для троек чисел, он испытал страшное потрясение. Несмотря на все свои усилия, он не мог избежать некоторых фатальных дефектов. Получить квадратный корень из минус единицы удавалось, но только ценой появления делителей нуля. Избавиться от делителей нуля представлялось решительно невозможным, что бы он ни делал.   Если вам кажется, что все это звучит несколько в духе попыток решить уравнение пятой степени, то кое-что вы ухватили правильно. Когда многие способные математики пытаются сделать нечто, но терпят неудачу, вполне может оказаться, что задача не имеет решения. Если и есть что-то главное, чему научила нас математика, то это факт, что многие задачи не имеют решений. Нельзя найти дробь, квадрат которой равен 2. Нельзя разделить угол на три части, используя циркуль и линейку. Нельзя решить уравнение пятой степени в радикалах. Математика имеет свои пределы. Быть может, невозможно построить трехмерную алгебру, обладающую всеми хорошими свойствами, которых мы от нее хотим. Если вы всерьез задумали разобраться, действительно ли дело обстоит таким образом, перед вами открывается программа исследований. Сначала надо указать свойства, которыми ваша трехмерная алгебра должна обладать. Потом следует проанализировать следствия этих свойств. Если из этого извлечь достаточное количество информации, то можно искать некие свойства, которые должна иметь данная алгебра, если она действительно существует, и причины, по которым она может не существовать. Так, по крайней мере, обстояло бы дело в наши дни. Подход Гамильтона был не столь систематическим. Он молчаливо предполагал, что его алгебра должна иметь «все» разумные свойства, а потом внезапно понял, что с одним из них, возможно, придется расстаться. Более важно то, что он осознал, что алгебры размерности три в колоде нет. Самое близкое, что получалось, — это четыре. Четверки, а не тройки чисел. Добавим еще два слова по поводу этих ускользающих алгебраических правил. Когда математики выполняют алгебраические вычисления, они организуют свои символы систематическим образом. Вспомним, что исходное арабское название «аль-джабр» означает «восстановление» — действие, про которое теперь мы сказали бы «перенесите слагаемое в другую часть уравнения с другим знаком». Лишь в течение последних 150 лет математики озаботились составлением явных списков правил, стоящих за всякими подобными действиями, — списков, из которых все остальные хорошо известные правила получаются как логические следствия. Такой аксиоматический подход играет для алгебры роль, подобную той, которую Эвклид сыграл для геометрии, и математикам понадобилось всего две тысячи лет, чтобы овладеть этой идеей. Чтобы было понятно, о чем мы говорим, можно сфокусироваться на трех из этих правил, которые все связаны с умножением. (Со сложением дело обстоит похожим образом, но проще; умножение — это как раз то место, где все начинает идти наперекосяк.) Дети, изучающие таблицу умножения, в конце концов замечают возможность сэкономить половину усилий. Не только трижды четыре дает двенадцать, но и четырежды три тоже. Если перемножить два числа, то результат не меняется от того, какое из чисел было взято первым. Этот факт называется законом коммутативности, и в символьной форме он говорит нам, что ab = ba для любых чисел а и b. Это правило выполнено также в расширенной системе комплексах чисел. Это можно доказать, рассматривая формулы Гамильтона для умножения пар. Тонким законом является закон ассоциативности, который гласит, что при перемножении трех чисел в одном и том же порядке не имеет значения, с какого умножения начать. Допустим, нам надо перемножить 2×3×5; можно начать с умножения 2×3, что дает 6, а далее умножить 6 на 5. Альтернативным образом можно сначала перемножить 3×5, что есть 15, а далее умножить 2 на 15. Оба способа действий приводят к одному и тому же результату — числу 30. Закон ассоциативности утверждает, что так происходит всегда; в символьной форме он говорит нам, что (ab)c = a(bc), где скобки показывают очередность, в которой надо выполнять умножение. Это свойство снова выполнено и для вещественных, и для комплексных чисел, и доказать это можно, используя формулы Гамильтона. Последнее, очень полезное правило — назовем его законом деления, хотя в учебниках вы найдете его под именем «существование мультипликативного обратного» — утверждает, что всегда можно поделить любое число на любое ненулевое число. Имеются веские основания для запрета деления на нуль; основная причина состоит в том, что это действие редко бывает осмысленным. Мы уже видели, что можно соорудить алгебру троек чисел, используя «очевидное» умножение. Эта система удовлетворяет законам коммутативности и ассоциативности. Но не закону деления. Великий взлет мысли Гамильтона, произошедший после долгих часов бесплодных поисков и вычислений, привел к следующему осознанию: можно образовать новую числовую систему, в которой и закон ассоциативности, и закон деления выполнены, но необходимо пожертвовать законом коммутативности. Но даже тогда подобное нельзя сделать с тройками вещественных чисел. Надо использовать четверки. Нет «разумной» трехмерной алгебры, но имеется довольно приемлемая четырехмерная. Это единственная алгебра такого типа, и до идеала ей не хватает только одного — закона коммутативности. Важно ли это? Ход мыслей Гамильтона был надолго заблокирован твердым убеждением в необходимости закона коммутативности. Все изменилось в одно мгновение, когда, чем-то внезапно вдохновленный, он понял, как перемножать четверки чисел. На календаре было 16 октября 1843 года. Гамильтон шел с женой по тропинке вдоль Королевского Канала, направляясь на собрание престижной Королевской Ирландской академии в Дублине. Его бессознательное, должно быть, кружило вокруг задачи о трехмерной алгебре, потому что внезапно его пронзило озарение. «Там и тогда я почувствовал гальванизирующий ток от приближающейся мысли, — писал он позднее в письме, — и искры, произведенные им, представляли собой фундаментальные уравнения между i, j, k, причем в точности такие, какие я с той поры всегда и использую». Гамильтон находился под таким впечатлением, что немедленно нацарапал формулы на каменной кладке моста Брумбридж. Мост сохранился до наших дней, но нацарапанное на нем — нет, хотя там и имеется памятная доска[42]. Формулы   i 2 = j 2 = k 2 = ijk = −1   также пережили своего создателя. Это очень симпатичные формулы, обладающие высокой симметрией. Но читателю, должно быть, не терпится спросить — при чем же здесь четверки чисел? Комплексные числа можно записать как пары (x, y), хотя обычно их записывают в виде x +iy, где i = √−1. В том же духе числа, о которых говорил Гамильтон, можно записывать или в виде четверок (x, у, z, w), или как комбинацию x + iу + jz + kw. Формулы Гамильтона относятся ко второму способу обозначений; если же у вас формальное умонастроение, то вы, возможно, этой записи предпочтете представление в виде четверок чисел. Гамильтон назвал свои новые числа кватернионами. Он доказал, что они подчиняются закону ассоциативности и — замечательным, как стало ясно позднее, образом — закону деления. Но не закону коммутативности. Из правил умножения кватернионов следует, что ij = k, но ji = −k. Система кватернионов содержит экземпляр комплексных чисел — кватернионы вида x + iy. Из формул Гамильтона видно, что −1 имеет не просто два квадратных корня i и −i, а кроме того, еще и j, −j, k и −k. На самом деле в кватернионной системе имеется бесконечно много различных квадратных корней из минус единицы. Таким образом, вместе с потерей закона коммутативности мы также потеряли правило, что квадратное уравнение имеет два решения. По счастью, ко времени изобретения кватернионов основное внимание в алгебре сместилось в сторону от решения уравнений. Преимущества кватернионов существенно перевесили их недостатки. К ним просто требовалось привыкнуть.   В 1845 году Томас Дизни заехал к Гамильтону вместе со своей дочерью Кэтрин — юношеским увлечением Уильяма. К тому моменту она успела потерять первого мужа и выйти замуж вторично. Встреча разбередила старую рану, и зависимость Гамильтона от алкоголя сделалась более серьезной. Один раз он напился и выставил себя таким полным дураком на научном обеде в Дублине, что после этого зарекся пить и в течение последующих двух лет пил только воду. Однако когда астроном Джордж Эйри начал посмеиваться по поводу его воздержания, Гамильтон принялся в ответ поглощать алкоголь в усиленных количествах. С того времени он стал хроническим алкоголиком. Два его дяди скончались, а друг и коллега совершил самоубийство; затем Кэтрин принялась писать ему письма, что только усугубило его депрессию. Она быстро поняла, что ее действия не подобают респектабельной замужней женщине, и вяло попыталась покончить с собой, а затем разъехалась с мужем и перебралась к матери. Гамильтон продолжал отправлять Кэтрин письма через ее родственников. В 1853 году она решила возобновить общение, послав ему небольшой подарок. Ответный шаг Гамильтона состоял в том, что он отправился к ней с визитом, захватив экземпляр своей книги о кватернионах. Две недели спустя она умерла. Гамильтон был убит горем. Его жизнь становилась все более и более беспорядочной; после его смерти, последовавшей в 1865 году (как полагали, от подагры, которой часто страдают тяжелые пьяницы), его математические статьи были найдены вперемешку с мусором и объедками.   Гамильтон был убежден в том, что кватернионы — это Святой Грааль алгебры и физики, истинное обобщение комплексных чисел на высшие размерности, а также ключ к геометрии и физике в пространстве. Разумеется, пространство имеет размерность три, тогда как кватернионы — четыре, но Гамильтон обратил внимание на естественную подсистему размерности три. Это «мнимые» кватернионы вида bi + cj + dk. Геометрически символы i, j, k можно интерпретировать как вращения вокруг трех взаимно перпендикулярных пространственных осей, хотя и здесь есть тонкости: дело в том, что при этом приходится работать в такой геометрии, где полная окружность содержит 720°, а не 360°. Если оставить в стороне этот выверт, можно понять, почему Гамильтон считал кватернионы полезными для геометрии и физики. Оставшиеся «вещественные» кватернионы вели себя в точности как вещественные числа. Их нельзя было выкинуть вовсе, потому что они имеют тенденцию возникать всякий раз, когда с кватернионами выполняются какие-либо алгебраические вычисления, даже если начать с мнимых кватернионов[43]. Если бы было возможным оставаться исключительно в области мнимых кватернионов, то существовала бы разумная трехмерная алгебра, и первоначальная задача Гамильтона увенчалась бы успехом. Четырехмерная система кватернионов была лучшей из возможных, а естественная трехмерная система, весьма аккуратно в них вложенная, вполне заменяла ту несуществующую чисто трехмерную алгебру. Гамильтон посвятил остаток жизни кватернионам, развивая их математику и разрабатывая их приложения к физике. Несколько посвященных последователей воздавали хвалы. Они основали школу кватернионистов, а после смерти Гамильтона бразды правления перешли к Питеру Тейту в Эдинбурге и Бенджамину Пирсу в Гарварде. Другие, однако, недолюбливали кватернионы — частью из-за их искусственности, но главным образом потому, что, по их мнению, нашли нечто получше. Наиболее значительными представителями лагеря несогласных были Герман Грассман из Пруссии и американец Джозайа Уиллард Гиббс, ныне общепризнанные создатели «векторной алгебры». Оба они изобрели полезные типы алгебр в любом числе измерений. В их работах не было ограничений типа четырехмерности или же трехмерности подмножества мнимых кватернионов. Алгебраические свойства этих векторных систем были не столь изящны, как у Гамильтоновых кватернионов. Например, нельзя было делить один вектор на другой. Но Грассман и Гиббс отдавали предпочтение общим работоспособным концепциям, даже если в них отсутствовали некоторые из обычных свойств чисел. Пусть нельзя разделить один вектор на другой, ну и что? Гамильтон же, сходя в могилу, верил, что кватернионы составляли его самый главный вклад в естественные науки и математику. На протяжении следующей сотни лет мало кто, за исключением Тейта и Пирса, с ним бы согласился, и кватернионы оставались позабытой тихой заводью викторианской алгебры. Если вам требовался пример бесплодной самодовлеющей математики, то кватернионы были пропуском в этот клуб. Даже в университетских курсах чистой математики кватернионы никогда не появлялись; их даже не показывали в качестве курьеза. Согласно Беллу, «глубочайшей трагедией Гамильтона были не алкоголь и не неудачный брак, а его упрямая вера в то, что кватернионы содержат в себе ключ к математике и физике вселенной. История показала, что Гамильтон трагически обманывал себя, когда продолжал утверждать: „Я по-прежнему определенно заявляю, что это открытие представляется мне настолько же важным для середины девятнадцатого столетия, насколько открытие флюксонов было важным для семнадцатого столетия“. Никогда еще великий математик столь отчаянно не ошибался».




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 758; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.