Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Крахмал




Крахмал – растительный полисахарид со сложным строением. Он состоит из амилозы и амилопектина; их соотношение различно в различных крахмалах (амилозы 13 – 30%; амилопектина 70 – 85%).

Амилоза и амилопектин (их свойства приведены в таблице 2.5) в растениях формируются в виде крахмальных зерен, структура которых до конца не выяснена.

 

Таблица 2.5. Свойства амилозы и амилопектина

Свойства Амилоза Амилопектин
Молекулярная масса 50 тыс. – 2 млн. От 1 до нескольких млн
Способность к ретроградции Высокая Низкая
Продукты действия β-амилазы Мальтоза Мальтоза; β-предельный декстрин
Продукты действия глюкоамилазы D-глюкоза D-глюкоза
Форма молекулы Линейная Разветвленная

 

Крахмал является важным компонентом пищевых продуктов, исполняя роль загустителя и связывающего агента. В одних случаях он присутствует в сырье, которое перерабатывается в пищевые продукты (например, хлебобулочные изделия). В других его добавляют для придания продукту тех или иных свойств – он используется широко при производстве пудингов, концентратов супов, киселей, соусов, салатных приправ, начинок, майонеза; один из компонентов крахмала – амилоза используется для пищевых оболочек и покрытий.

К основным физико-химическим свойствам крахмала, имеющим большое значение для пищевых продуктов относятся способность крахмала к клейстеризации, вязкость клейстеризованных растворов и их способность давать студни.

Неповрежденные крахмальные зерна нерастворимы в воде, но могут обратимо впитывать влагу и легко набухают. Увеличение диаметра зерен при набухании зависит от вида крахмала. Например, для обычного кукурузного крахмала – 9,1%, для восковидного – 22,7%.

Клейстеризация крахмала проявляется при его нагревании в воде, и эта его способность к клейстерообразованию обусловлена наличием в нем амилопектина. В первой фазе нагревания вода медленно и обратимо поглощается зернами крахмала, причем происходит их ограниченное набухание. Вторая фаза характеризуется тем, что зерна быстро набухают, во много раз увеличиваясь, поглощая большое количество влаги и быстро теряя двойное лучепреломление, т. е. свою кристаллическую структуру. При этом вязкость крахмальной суспензии быстро возрастает, и небольшое количество крахмала растворяется в воде. В третьей фазе набухания, протекающей при повышенных температурах, зерна становятся почти бесформенными мешочками, из которых вымылась наиболее растворимая часть крахмала. Как правило, большие крахмальные зерна клейстеризуются при более низкой температуре, чем мелкие. Температуру, соответствующую разрушению внутренней структуры крахмальных зерен, называют температурой клейстеризации. Она зависит от источника получения крахмала (табл. 2.6).

 

Таблица 2.6. Зависимость температуры клейстеризации крахмала от источника получения

Источник Содержание амилозы, % Температуры клейстеризации, 0С
Кукуруза   62 – 70
Картофель   58 – 66
Тапиока 52 – 64
Пшеница   53 – 65
Рис   61 – 78
Рожь 57 – 70
Ячмень   56 – 62
Овес   56 – 62
Сорго   69 – 75
Горох   57 – 70
Фасоль   64 – 67
Восковидная кукуруза   63 - 72

 

Вязкость крахмальных клейстеров имеет очень важное прак­тическое значение. При этом вязкость амилопектиновой фракции выше, чем амилозной, вследствие своего ветвистого строения моле­кулы амилопектина (внутреннее трение, у растворов с такими объе­мистыми молекулами больше).

Кривые вязкости, полученные на ротационном вискозиметре, показы­вают, что сначала увеличение температуры ведет к крутому подъему вяз­кости, что связано с набуханием крахмальных зерен. Затем набухшие крахмальные зерна разрываются и дезинтегрируют, вызывая падение вяз­кости (рис. 2.5).Наклон кривых сильно различается для различных краxмалов.

Рис. 2.5. Изменение вязкости в процессе клейстеризации крахмальной суспензии.

 

Пищевые кулинарные изделия, получаемые из крахмала (со­усы, подливки, кисели и пр.), должны обладать необходимой вязко­стью. Чем большую вязкость имеет клейстер, содержащий опреде­ленное количество крахмала, тем меньше его надо расходовать для получения продуктов с требуемой вязкостью. Картофельный крах­мал дает клейстеры со значительно большей (в среднем) вязкостью, чем кукурузный. Для получения клейстеров с одинаковой вязкостью нужно брать разные количества того или иного крахмала.

Клейстеризация крахмала, вязкость крахмальных растворов, харак­теристика крахмальных гелей зависят не только от температуры, но и от вида и количества других присутствующих компонентов. С этим необхо­димо считаться, поскольку в процессе производства пищевых продуктов крахмал находится в присутствии таких веществ, как сахар, белки, жиры, пищевые кислоты и вода.

Высокие содержания сахара уменьшают скорость клейстеризации крахмала, снижают пик вязкости. Дисахариды являются более эффек­тивными с точки зрения замедления клейстеризации и снижения пика вязкости, чем моносахариды (рис. 2.6). Кроме того, сахара уменьшают силу крахмальных гелей, играя роль пластификатора и вмешиваясь в об­разование зон связывания.

 

Рис. 2.6. Влияние сахаров на развитие вязкости при клейстеризации кукурузного крахмала.

 

На клейстеризацию крахмала при производстве пищевых продуктов оказывают влияние и липиды – триглицериды (жиры, масла), моно- и диглицериды. Жиры, которые могут давать комплексы с амилозой, тормозят набухание крахмальных зерен. Вследствие этого в белом хлебе, в котором мало жира, 96% крахмала обычно полностью клейстеризовано. При производстве пекарских изделий эти два фактора (большие концентрации жира и низкая аw) вносят большой вклад в неклейстеризацию крахмала.

Моноглицериды жирных кислот (С16 – С18) приводят к увеличению температуры клейстеризации, увеличению температуры, соответствующей пику вязкости, уменьшению силы геля. Это связано с тем, что компоненты жирных кислот в моноацилглицеридах могут образовывать соединения включения с амилозой, а, возможно, и с длинными внешними цепями амилопектина (рис. 2.7).

 

Рис. 2.7. Образование соединений включения

 

Кислоты присутствуют во многих продуктах, где используется крахмал в качестве загустителя. При низких рН (салатные приправы, фруктовые начинки) имеет место значительное снижение пика вязкости крахмальных клейстеров и быстрое снижение вязкости при нагревании (Рис. 2.8)

 

Рис.2.8. Влияние рН на вязкость клейстера кукурузного крахмала при нагревании (90 0С)

 

Поскольку при низких рН имеет место интенсивный гидролиз с об­разованием незагустевающих декстринов, необходимо, чтобы избежать кислотного разжижения, использовать в качестве загустителя в кислых продуктах модифицированные поперечно-сшитые крахмалы.

Студнеобразующая способность проявляется при достаточ­ном содержании крахмала в клейстерах, а образование и свойства студней из них зависят, в основном, от амилозной фракции. Известно, что студни образуются в тех случаях, когда молекулы имеют цепочное (линейное) строение.

Образование студней используется, например, при изготовле­нии киселей, запеканок, конфет, колбас и др.

Свойства крахмальных студней зависят от концентрации крахмала, продолжительности выстойки и других факторов. Проч­ность студней быстро возрастает при их хранении и выстойке, при­чем наиболее быстро у концентрированных студней.

Студни из крахмалов разных видов по своим свойствам не одинаковы.

Студни, изменившие первоначальную прочность во время хранения, после вторичного нагревания приобретают ее снова, т. е. явления структурообразования обратимы при нагревании, причем у рисовых и пшеничных крахмалов наблюдается полная обратимость, а у картофельных – ограниченная.

У крахмальных студней, особенно из картофельного крахмала, с течением времени наблюдается синерезис, проявляющийся в том, что в результате уплотнения гелевой структуры выделяется свобод­ная вода на поверхности.

В молекуле крахмала имеется много свободных гидроксильных групп, которые способны вступать в химические реакции со многими соединениями и давать эфиры и различные производные. На этом основано получение различных модифициро­ванных его производных.

 

Модифицированные, или измененные, крахмалы, обладающие новыми свойствами, находят все большее и разнообразное применение в различных отраслях пищевой промышленности.

Модифицированные крахмалы имеют, как правило, такой же внешний вид, как и обычный (нативный) крахмал. Однако, воздействуя на него различными физическими, химическими и биологическими реагентами, изменяющими направленно такие его свойства, как растворимость, вязкость, прозрачность, стабильность клейстеров и другие физико-химические параметры, получают крахмалы с удивительными свойствами. Крахмалы, свойства которых изменены в результате специальной обработки, называют модифицированными крахмалами.

Основными превращениями, которые претерпевают крахмалы в

1. Расщепление (деполимеризация) полисахаридных компонентов крахмала с сохранением или без сохранения зернистой структуры.

2. Увеличение количества существующих или появление новых функциональных групп, перестройка структуры полисахаридных цепей в результате трансгликолизирования.

3. Потеря зернами крахмала первоначальной структуры и приобретение ими после дегидратации новой структуры.

4. Взаимодействие гидроксильных групп крахмала с различными химическими веществами с образованием эфирных связей и присоединением их остатков.

5. Одновременная полимеризация блоков частичного гидролиза крахмала и других мономеров (сополимеризация) с образованием новых соединений.

Модифицированные крахмалы могут быть получены путем одного из указанных превращений или в результате двух и более превращений, протекающих одновременно или последовательно.

Набухающие крахмалы получают полной или частичной клейстеризацией нативного или модифицированного крахмала в воде при нагревании с последующим высушиванием клейстера и измельчением. Они способны набухать в холодной воде, полностью или частично переходить в растворимое состояние. Набухающие крахмалы вводят в сухие смеси мороженного, пудингов, кремов и других изделий быстрого приготовления.

Крахмал, модифицированный кислотой, получают при нагревании слабо подкисленной водной суспензии крахмальных зерен до температуры 45 – 50 0С.В зернах ослабляются межмолекулярные связи и происходит частичное расщепление гликозидных связей. Молекулы амилопектина становятся менее разветвленными, вследствие чего крахмал дает более прозрачные студни. Этот крахмал практически нерастворим в холодной воде, но хорошо растворим в кипящей воде. Для этого крахмала, по сравнению с исходным, характерна более низкая вязкость горячих клейстеров, уменьшение силы геля, увеличение температуры клейстеризации. Крахмал, модифицированный кислотой, широко применяют в пищевой промышленности: кукурузный и пшеничный – для приготовления конфет, рахат-лукума и других кондитерских изделий; картофельный – для пудинговых смесей.

Этерифицированные крахмалы. Известно, что крахмал может быть подвергнут этерификации. В пищевой промышленности чаще применяют крахмалофосфаты – эфиры крахмала и солей фосфорной кислоты. Их используют в качестве загустителей, стабилизаторов, эмульгаторов, не имеющих запаха и вкуса

Монофосфаты получают при нагревании крахмала с водорастворимыми фосфатами, солями орто-, пиро- или метафосфорной кислоты в течение 1 – 6 ч при повышенной температуре (обычно 50 – 60 0С). По сравнению с обычным крахмалом этот крах­мал имеет более низкую температуру клейстеризации, набухает в холод­ной воде (СЗ = 0,07 и выше), имеет пониженную способность к ретроградации. Характеристика фосфатных зерновых крахмалов в принципе подобна картофельному крахмалу, который тоже содержит фосфатные группы. Монофосфатный крахмал применяют в замороженных продуктах в качестве загустителя, благодаря его исключительной стабильности при замораживании-оттаивании. Предварительно клейстеризованныи фосфатный крахмал диспергируется в холодной воде, благодаря чему может успешно использоваться в инстант-десертных порошкообразных продуктах и в мороженом.

В отличие от монофосфатного крахмала, в дифосфатном крахмале фосфат этерифицируется с двумя гидроксильными группами, часто из двух соседних крахмальных цепей. Таким образом, образуется химичес­кий мост между близлежащими цепями, и эти крахмалы относят к поперечно-сшитым крахмалам. Наличие ковалентной связи между двумя крахмальными цепями предохраняет крахмальные зерна от на­бухания, дает большую стабильность при нагревании и возможном гид­ролизе.

Поперечно-сшитые крахмалы могут быть получены реакцией крах­мала (R-ОН) с би- и полифункциональными агентами, такими как триметафосфат натрия, оксихлорид фосфора, смешанные ангидриды уксус­ной и дикарбоновой (например, адипиновой) кислот.

Наиболее значительное изменение в свойствах поперечно-сшитого крахмала – высокая стабильность при повышенных температурах, низ­ких значениях рН, механических воздействиях, снижение способности к ретроградации, стабильность при замораживании – оттаивании; при хра­нении клейстеров поперечно-сшитых крахмалов не наблюдается синерезис. Благодаря этим свойствам поперечно-сшитые крахмалы применяют в детском питании, салатных приправах, фруктовых начинках, в кремах.

Ацетаты крахмала низкой степени замещения получают путем обра­ботки зерен крахмала уксусной кислотой или, предпочтительнее, ацетангидридом в присутствии катализатора (как правило при рН 7-11; t = 25 °С; СЗ = 0,5). Растворы ацетатов крахмала очень стабильны, поскольку на­личие ацетил-групп препятствует ассоциации двух амилозных молекул и длинных боковых цепей амилопектина. Ацетаты крахмала по сравнению с обычным кукурузным крахмалом имеют пониженную температуру клейстеризации, пониженную способность к ретроградации, образуют прозрачные и стабильные клейстеры. Благодаря этим качествам ацетаты крахмала применяют в замороженных продуктах, пекарских изделиях, инстант-порошках и т.д.

Окисленные крахмалы вырабатывают с применением перманганата, гипохлорита, перекисей, йодной кислоты. Окислители вызывают гидролитическое расщепление гликозидных связей, окисление спиртовых групп в карбонильные и карбоксильные. Крахмал окисляют в водных суспензиях и полусухой. Окисленные крахмалы, по сравнению с исходным, способны давать менее вязкие, но более прозрачные и стабильные клейстеры. Их применяют в качестве заменителей агара, агароида при производстве желейных кондитерских изделий, для стабилизации мороженого и др. Диальдегидный крахмал, полученный под действием йодной кислоты (со степенью окисления до 2%), используют в хлебопечении, он оказывает укрепляющее действие на клейковину муки.




Поделиться с друзьями:


Дата добавления: 2015-07-13; Просмотров: 640; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.