КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение Шредингера для атома водорода
Линейный гармонический осциллятор в квантовой механике. Линейный гармонический осциллятор — система, совершающая одномерное движение под действием квазиупругой силы, — является моделью, используемой во многих задачах классической и квантовой теории. Пружинный, физический и математический маятники — примеры классических гармонических осцилляторов. Потенциальная энергия гармонического осциллятора равна: где w 0 — собственная частота колебаний осциллятора, т — масса частицы. Зависимость имеет вид параболы (рис. 300), т. е. «потенциальная яма» в данном случае является параболической. Гармонический осциллятор в квантовой механике — квантовый осциллятор — описывается уравнением Шредингера: (63.2) где Е — полная энергия осциллятора. В теории дифференциальных уравнений доказывается, что уравнение (63.2) решается только при собственных значениях энергии (63.3) Формула (63.3) показывает, что энергия квантового осциллятора может иметь лишь дискретные значения, т. е. квантуется.
Уравнение Шредингера, примененное к атому водорода, позволяет получить результаты боровской теории атома водорода без привлечения постулатов Бора и условия квантования. Квантование энергии возникает как естественное условие, появляющееся при решении уравнения Шредингера, в некотором смысле аналогичное причине квантования энергии для частицы в потенциальной яме. Применить стационарное уравнение Шредингера к атому водорода это значит: а) подставить в это уравнение выражение для потенциальной энергии взаимодействия электрона с ядром б) в качестве m подставить me - массу электрона После этого получим уравнение Шредингера для атома водорода: Так как потенциальная энергия зависит только от r, решение уравнения удобно искать в сферической системе координат: r, θ, φ.(рис. 8.1) Рис. 8.1 Волновая функция в этом случае будет функцией от r, θ и φ, т.е. Оператор Лапласа необходимо записать в сферических координатах, т.е. выразить через производные по r, θ и φ. Мы не будем этого делать, поскольку получение решения уравнения Шредингера для атома водорода не входит в программу курса общей физики. Приведем лишь результаты. Оказывается, что решение уравнения Шредингера для атома водорода существует при следующих условиях: а) при любых положительных значениях полной энергии (E > 0). Это так называемыенесвязанные состояния электрона, когда он пролетает мимо ядра и уходит от него на бесконечность; б) при дискретных отрицательных значениях энергии Эта формула совпадает с полученной Бором формулой для энергии стационарных состояний атома водорода. Целое число n называют главным квантовым числом.
Дата добавления: 2017-01-14; Просмотров: 6275; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |