Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Расчет физически нелинейных задач




Общие положения

РЕШЕНИЕ НЕЛИНЕЙНЫХ ЗАДАЧ

Нелинейный процессор предназначен для решения физически и геометрически нелинейных, а также контактных задач.

В линейных задачах существует прямая пропорциональность между нагрузками и перемещениями вследствие малости перемещений, а также между напряжениями (усилиями) и деформациями в соответствии с законом Гука. Поэтому для линейных задач справедлив принцип суперпозиции и независимости действия сил.

В физически нелинейных задачах отсутствует прямая пропорциональность между напряжениями и деформациями. Материал конструкции подчиняется нелинейному закону деформирования. Закон деформирования может быть симметричным и несимметричным – с различными пределами сопротивления растяжению и сжатию.

В геометрически нелинейных задачах отсутствует прямая пропорциональность между деформациями и перемещениями. На практике наибольшее распространение имеет случай больших перемещений при малых деформациях.

В задачах конструктивной нелинейности имеет место изменение расчетной схемы по мере деформирования конструкции, например, в момент достижения некоторой точкой конструкции определенной величины перемещения возникает контакт этой точки с опорой.

Для решения таких задач нелинейный процессор организует процесс пошагового нагружения конструкции и обеспечивает решение линеаризованной системы уравнений на каждом шаге для текущего приращения вектора узловых нагрузок, сформированного для конкретного нагружения.

При решении задач конструктивной нелинейности применяется шагово-итерационный метод.

Нелинейный процессор позволяет получить напряженно-деформированное состояние для мономатериальных и для биматериальных, в частности железобетонных, конструкций.

Для решения нелинейных задач необходимо задавать информацию о количестве шагов и коэффициентах к нагрузке. Схема может содержать несколько нагружений, из которых может быть сформирована последовательность (история) нагружений.

Моделирование физической нелинейности материалов конструкций производится с помощью физически нелинейных конечных элементов, воспринимающих информацию из развитой библиотеки законов деформирования материалов (зависимостей σ-ε). Библиотека законов деформирования позволяет учитывать практически любые физически-нелинейные свойства материала. Эта библиотека законов деформирования материала является библиотекой открытого типа и может пополняться новыми законами.

Шаговый процессор позволяет получить напряженно-деформированное состояние с учетом нелинейных эффектов как для мономатериальных, так и для биматериальных конструкций. Для последних предлагается определенный набор характеристик второго материала (армирующих включений).

Библиотека физически нелинейных конечных элементов содержит также элементы, позволяющие моделировать одностороннюю работу твердого тела и сыпучей среды - грунта на сжатие с учетом сдвига по схеме плоской деформации в соответствии с законом Кулона.

Матрица жесткости линеаризованной физически нелинейной системы формируется на основании переменных интегральных жесткостей, вычисляемых в точках интегрирования конечного элемента при решении упругой задачи на конкретном шаге. Схема численного интегрирования по области конечного элемента и набор используемых жесткостей определяются типом конечного элемента. Для того чтобы получить соответствующий набор интегральных жесткостей, сечение конечного элемента в точках интегрирования дробится на ряд элементарных подобластей. В центрах этих подобластей определяются новые значения физико-механических характеристик материала в соответствии с заданной диаграммой деформирования. На каждом шаге решается линеаризованная задача с формированием векторов перемещений, усилий и новых интегральных жесткостей по касательному модулю для последующего шага. Количество шагов и коэффициенты к нагрузке задаются пользователем. Геометрическая интерпретация шагового метода для случая одноосного растяжения (сжатия) представлена на рисунке 7.1.

Рис. 7.1

Шаговый процессор позволяет комбинировать линейные и нелинейные конечные элементы. Допускается расчет по суперэлементной схеме, если нелинейные элементы присутствуют только в основной схеме.

На каждом шаге производится оценка напряженно-деформированного состояния. В разделе результатов расчета «Сведения о состоянии материалов» приводятся сообщения о развитии или достижении предельных состояний, появлении пластических шарниров или состояний разрушения.

Для стержневых конечных элементов анализируется напряженно-деформированное состояние поперечных сечений стержня в точках дробления. Напряженно-деформированное состояние в плоских и объемных конечных элементах анализируется в центральной точке элемента.

Библиотека физически-нелинейных КЭ содержит элементы, позволяющие производить статический анализ конструкций, состоящих из разнородных конечных элементов, с учетом физической нелинейности материала. Состав библиотеки приведен в табл. 7.1.

Таблица 7.1.

№№ КЭ Наименование КЭ Признак схемы Плос-кость располо-жения Степени свободы
         
(205) Универсальный пространственный стержневой конечный элемент - суперэлементного построения Универсальный пространственный стержневой конечный элемент - равновесного построения   XOZ XOZ XOY произ-вольно X, Z X, Z, UY   X,Y,Z X,Y,Z UX, UY, UZ
221 (223) Прямоугольный элемент балки -стенки 1,2,5 (4,5) XOZ (произ-вольно) X, Z (X,Y,Z)
222 (224) Треугольный элемент балки-стенки 1,2,5 (4,5) XOZ (произ-вольно) X, Z (X,Y,Z)
         
(227) Четырехугольный (8-узловой) элемент балки-стенки   (4,5) XOZ (произ-вольно) X, Z (X, Y, Z)
  Параллелепипед   произ-вольно X, Y, Z
  Тетраэдр 4, 5 произ-вольно X, Y, Z
  Прямая треугольная призма   произ-вольно X, Y, Z
         
  Пространственный 6-ти узловой изопараметрический элемент (произвольная треугольная призма)   произ-вольно X, Y, Z
  Пространственный 8-ти узловой изопараметрический элемент (произвольный гексаэдр)   произ-вольно X, Y, Z
  Прямоугольный элемент оболочки     произ-вольно X, Y, Z, UX, UZ, UY
  Треугольный элемент оболочки     произ-вольно X,Y,Z UX,UY,UZ
         
  Универсальный четырехугольный конечный элемент оболочки   произ-вольно X, Y, Z, UX, UY, UZ
  Прямоугольный элемент грунта (плоская деформация) 1,2 XOZ Плоская деформация X, Z
  Треугольный элемент грунта (плоская деформация) 1,) XOZ Плоская деформация X, Z
  Четырехугольный элемент грунта (плоская деформация)     XOZ Плоская деформация X, Z

 




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 1004; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.