Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Как же получить запись числа в двоичной системе счисления?




Существуют позиционные и непозиционные системы счисления.

Системы счисления. Перевод целых числе из десятичной системы в двоичную и обратно

Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Пример непозиционной системы счисления – римская: несколько чисел приняты за основные (например, I, V, X), а остальные получаются из основных путем сложения (как VI, VII) или вычитания (как IV, IX).

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

К позиционным системам счисления относятся двоичная, десятичная, восьмеричная, шестнадцатеричная.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7•102 + 5•101 + 7•100 + 7•10-1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д.

11,012=1* 21+1* 20+0* 2-1+1*2-2.

В современных компьютерах применяются позиционные системы счисления, в основном двоичная система. Форма представления данных, содержащая всего две цифры – 0 и 1 позволяет создавать достаточно простые технические устройства для представления (кодирования) и распознавания (дешифровки) информации. Двоичное кодирование выбрали для того, чтобы максимально упростить конструкцию декодирующей машины, ведь дешифратор должен уметь различать всего два состояния (например, 1 – есть ток в цепи, 0 – тока в цепи нет). По этой причине двоичная система и нашла такое широкое применение.

Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел.

Перевод числа из десятичной системы счисления в двоичную (1-й способ). Этот способ перехода от записи числа в десятичною системе счисления к записи его в двоичной системе состоит в представлении числа в виде суммы степеней двойки и последующем выделении коэффициентов такого представления. Продемонстрируем этот способ на примерах:

А) 2710 = (1· 24 + 1· 23 +0· 22 +1· 21 +1· 20)10 =110112

В) 12,2510 = (8 + 4+ 1/4)10 = (23 + 22 + 2-2)10 =

= (1· 23 + 1· 22 + 0· 21 + 0· 20 + 0· 2-1 + 1· 2-2)10 = 1100,012.

2-й способ:

Перевод целых чисел. Пусть требуется найти представление числа 1210 в двоичной системе счисления.

Поступаем следующим образом: делим, начиная с 12, каждое получающееся частное на основание системы, в которую переводим число, то есть на 2. Получаем:

Затем в направлении, указанном стрелкой, начиная с последнего частного (в нашем случае оно всегда будет равно 1), записываемого в старший разряд формируемого двоичного представления, фиксируем все остатки. В итоге получаем ответ: 1210= 11002.

Оба способа правильны и допустимы. Поэтому мы вправе выбрать его по своему усмотрению.

Перевод числа из двоичной системы счисления в десятичную. Это перевод – как бы обратный к изложенному выше. Его наиболее просто осуществить, основываясь на позиционности двоичной системы счисления. Уже отмечалась правомерность записи двоичного числа в виде суммы степеней основания системы счисления, то есть степеней двойки. Сделав такую запись, надо подсчитать десятичное значение полученной суммы:

1012=(1· 22 +0· 21 + 1· 20)10=(4+1)10=510

11012=(1· 23 + 1· 22 + 0· 21 + 1· 20)10 = (8+4)10=1210

1000001001,1012 = (1· 29 + 0· 28 + 0· 27 + 0· 26 + 0· 25+ 0· 24 + 1· 23 + 0· 22 + 0· 21 + 1· 20 1· 2-1 + 0· 2-2 +1· 2-3)10 = (512 + 8 + 1 + 1/2 + 1/8)10 = (521+5/8)10 = (521,625)10

(Заметим, что, несмотря на длину исходной двоичной записи, степени числа 2 легко подсчитываются без калькулятора, которого может не оказаться под рукой.)

Действительно, известно, что

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27=128,

28 = 256, 29=512, 210 = 1024.

Позиционная систе́ма счисле́ния — система счисления, в которой один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен.

Любое число C в позиционной системе счисления с основанием Р может быть представлено в виде полинома:

C= Cn Pn +Cn-1 Pn-1 +…+C1 P1 +C0 P0 +C-1 P-1 +…+C-m P-m,

 
 

или

где в качестве Ci могут стоять любые из Р цифр алфавита, а нижние индексы определяют местоположение цифры в числе (разряд):

* положительные значения индексов - для целой части числа (n разрядов);

* отрицательные значения - для дробной (m разрядов).

В вычислительных системах применяются две формы представления чисел:

· естественная форма, или форма с фиксированной запятой (точкой);

· нормальная форма, или форма с плавающей запятой (точкой).

С фиксированной запятой все числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой, отделяющей целую часть от дробной.

C = Cn Cn-1 …C1 C0, C-1… C-m

Запятая опускается, если дробная часть отсутствует. Позиции цифр в такой записи называются разрядами. Разряды нумеруются влево от запятой, начиная с нуля: 0-й,1-й,...(n-1)-й, n-й; и вправо от запятой: 1-й, 2-й,...(m-й).

Значение Ci цифры ci в позиционных системах счисления определяется номером разряда:

Ci = сi Рi.

Величина Pi называется весом, или значением, i-го разряда. В позиционных системах счисления значения соседних разрядов отличаются в P раз: левый в P раз больше правого.

Пример 3.1. Десятичная система счисления.

Р=10.

Цифры: 0,1,2,3,4,5,6,7,8,9.

723,1910 =7×102 +2×101 +3×100 +1×10-1 +9×10-2.

Пример 3.2. Двоичная система счисления.

Р=2.

Цифры: 0,1.

101110,1012 = 1×25 +0×24 +1×23 +1×22 +1×21 +0×20 +1×2-1 +0×2-2 +1×2-3

Эта форма наиболее проста, естественна, но имеет небольшой диапазон представления чисел и поэтому не всегда приемлема в вычислениях.

Максимальное целое число, которое может быть представлено в n разрядах:

Nmax = Pn -1.

Минимальное значащее (не равное 0) число, которое можно записать в m разрядах дробной части:

Nmin = P-m.

Имея в целой части числа n, а в дробной части m разрядов, можно записать всего Pn+m разных чисел.

Пример 3.3. Двоичная система счисления.

Р = 2.

n = 10, m = 6.

Возможное для представления значение N лежит в пределах:

0,015<N<1024.

Если в результате операции получится число, выходящее за допустимый диапазон, происходит переполнение разрядной сетки, и дальнейшие вычисления теряют смысл. В современных ЭВМ естественная форма представления используется как вспомогательная и только для целых чисел.

С плавающей запятой каждое число изображается в виде двух групп цифр. Первая группа цифр называется мантиссой, а вторая порядком, причем абсолютная величина мантиссы должна быть меньше 1, а порядок - целым числом. В общем виде число в форме с плавающей запятой может быть представлено так: ,


где M - мантисса числа (|М| <1);

r - порядок числа (r - целое число);

P - основание системы счисления.




Поделиться с друзьями:


Дата добавления: 2017-01-14; Просмотров: 482; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.