КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Рентгенівська комп'ютерна томографія
Як було зазначено вище, при КТ уперше було використано рентгенівське випромінювання як джерело інформації для математичної обробки. Цей чутливий і високоінформативний метод рентгенодіагностики — пошарове рентгенологічне дослідження, засноване на комп'ютерній реконструкції зображення, одержуваного при круговому скануванні об'єкта вузьким пучком рентгенівських променів. Фізична природа процесу томографування полягає в наступному: інформаційний промінь сканує ("переглядає") людське тіло по окружності. По інший бік рентгенівської трубки встановлено систему датчиків, кількість яких змінювалася від двох (перше покоління томографів) до 500 (третє покоління) і до кількох тисяч твердотільних датчиків, розташованих у кілька рядів (четверте покоління). Мал. 3. Принцип дії рентгенівського променя Ці датчики фіксують змінені кількісні характеристики інформаційних променів, тобто відтворюють ступінь ослаблення пучка. Обертаючись навколо пацієнта, рентгенівський промінь "переглядає" його тіло під різними ракурсами, у цілому під кутом 360° (мал. 3). До кінця обертання випромінювача в пам'яті комп'ютера зберігаються зафіксовані сигнали всіх датчиків. Накопичена інформація у вигляді масиву даних обробляється ППЗ, за допомогою якого реконструюється графічне зображення зрізу (графічна матриця). Воно складається з кількох десятків тисяч світлових точок, яскравість яких пропорційна щільності тканин, через які проходив пучок випромінювання. При цьому комп'ютером розраховується коефіцієнт ослаблення променів або коефіцієнт абсорбції (КА) тканин, що виражається в одиницях Хаунсфілда (Hounsfield Units, HU), для кожної точки зображення. Ця величина показує, наскільки біологічна тканина здатна поглинати (послаблювати) рентгенівські промені. Кістка поглинає рентгенівські промені сильніше порівняно з іншими тканинами і має найбільший КА (+800+ +3000 HU). Повітря практично не поглинає промені і має найменший КА (-1000 HU). Якщо розмістити на прямій три основні точки КА: > КА максимального ослаблення +1000 HU (щільність кам'янистої частини скроневої кістки); > КА мінімального ослаблення -1000 HU (щільність повітря); > КА води 0 НU, то одержимо шкалу Хаунсфілда — один з основних інструментів КТ-діагностики. Здатність тканин поглинати рентгенівські промені прямо пов'язана з їх щільністю, що також може вимірюватися в одиницях Хаунсфілда. Таким чином, якщо за нульову величину щільності прийнята щільність води при щільності кістки + 1000 HU і щільності повітря -1000 HU, то дана шкала також буде називатися шкалою Хаунсфілда. Відповідно до цієї шкали весь діапазон щільностей тіла людини складається з 2000 одиниць: від -1000 до +1000. У сучасних КТ-дослідженнях зображення щільностей коливається від -1000 до +3000 HU. A це означає, що чим більша щільність тканин, тим сильніше вона поглинає випромінювання і тим світлішою ця тканина є на екрані: кістка біла, повітря чорне. Таким чином, нормальні і патологічні утворення розрізняють за градаціями переходу від чорного до білого кольору. Деякі тканини і відповідні їм параметри щільності, виражені в одиницях Хаунсфілда, наведено на мал. 29. Користуючись клавіатурою, лікар може збільшувати це зображення, виділяти і збільшувати окремі його частини, вимірювати розміри органа, визначати щільність кожної ділянки тканини в умовних одиницях. За серією двовимірних зображень за допомогою математичних методів обробки можна відновити об'ємне зображення об'єкта. У медицині побачити невидиме або ледве помітне оком означає встановити діагноз на ранній стадії захворювання, коли ще можна уникнути небезпечного розвитку патології та оперативного втручання. Основою візуального аналізу будь-яких зображень є пошук і виявлення ледве помітних і невидимих оку лікаря діагностичних ознак. КТ використовують не тільки з діагностичною метою, а і як метод контролю за виконанням хірургічних втручань. Наприклад, топографія структур головного мозку різко змінюється після розкриття черепа при втручанні на патологічному вогнищі. Під час операції потрібна постійна корекція в оцінці взаємодії анатомічних структур. Під контролем КТ уводять волоконно-оптичні прилади і мікрохірургічні інструменти в ушкоджені ділянки дисків хребців і виконують найтонші операції. Спочатку існували комп'ютерні томографи для дослідження тільки головного мозку. Це зараз звучить буденно, але 35 років тому вперше у світі людство одержало можливість заглянути усередину живого мозку й судити про порушення в ньому не по непрямих ознаках, а вивчати морфологічні зміни самого субстрату, диференціювати сіру й білу речовину. Технічний прогрес привів до вдосконалювання апаратур: з'явилися могутніші, швидкісні апарати, пристосовані для дослідження всього тіла пацієнта (мал. 5). Проблему диференціації органів і тканин, що мають рівну або дуже близьку щільність за шкалою Хаунсфілда, було вирішено шляхом внутрішньовенного контрастного посилення, тобто введення таких речовин в організм людини, які, накопичуючись в органах, змінювали їхню щільність. Методики контрастного посилення дають змогу розрізняти й визначати характер пухлин (новоутворень) на фоні м'яких тканин, що їх оточують, у тих випадках, коли вони не видимі при звичайному дослідженні.
Мал. 5. Дослідження усього тіла пацієнта На сьогодні нараховуються чотири покоління рентгенівських комп'ютерних томографів. Прикладом томографа третього покоління є спіральний томограф, названий так через обертальне переміщення віялового рентгенівського пучка, що створює траєкторію спіралі. Більшість сучасних установок в Україні — це апарати третього покоління. Якщо на апаратах першого покоління процес зчитування інформації і реконструювання одного зображення займав кілька хвилин, на апаратах другого — десятки секунд, то на томографах третього і четвертого поколінь — кілька секунд. Таким чином, щоб дослідити головний мозок на томографах першого покоління з товщиною зрізу 10 мм (тобто кількість зрізів — до 8), необхідно було затратити 8—10 хв. У 2004—2005 роках було розроблено 32- і 64-зрізові мультиспіральні томографи, які є вершиною технічного прогресу (мал. 6). . Мал. 6. Спіральний комп’ютерний томограф Недоліком КТ є створення променевого навантаження (рентгенівське випромінювання), тому застосування її без достатніх підстав (показань) небажане.
Дата добавления: 2017-02-01; Просмотров: 110; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |