КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод ФибоначчиМетод дихотомии Метод поразрядного приближения Этот метод является разновидностью метода равномерного поиска и реализуется следующим алгоритмом: 1. Задаём начальное приближение x=x₀ слева от максимума F(x) и вычисляем F(x₀). Задаём D=h, где h=∆x – начальный шаг поиска. 2. Полагаем, что G=F(xn), где вначале F(xn)=F(x₀), задаём x=x+D и вычисляем F(x n+1)=F(x). 3. Проверяем условие F(x n₊₁)>G; если оно выполняется, идём к п.2, если нет, то к п.4. 4. Полагаем D=-D/4. Проверяем условие |D|>E/4, где E – заданная погрешность вычисления xn в точке максимума. Если оно выполняется, идём к п.2, т.е. обеспечиваем поиск максимума в другом направлении с шагом в 4 раза меньше прежнего. Если данное условие выполняется, процесс вычисления заканчиваем. Метод дихотомии (деление интервала поиска [a, b] пополам) реализуется следующим алгоритмом: 1. Проверяем условие |b-a|<2E, где E – заданная погрешность вычисления xn. Если это условие выполняется, идём к п.6; если не выполняется, идём к п.2. 2. Делим интервал поиска [a, b] пополам и вычисляем две абсциссы, симметрично расположенные относительно точки x=(a + b)/2 x1=(a + b - E)/2 и x2=(a + b + E)/2 3. Для этих значений x вычисляем F(x₁)>F(x₂). 4. Проверяем условие F(x₁)>F(x₂). Если оно выполняется, полагаем b=x₂ и идём к п.1. Если не выполняется, идём к п.5. 5. Полагаем a=x₁ и идём к п.1. 6. Выводим на печать xn=(a+b)/2 и вычисляем F(xn). В методе Фибоначчи точка деления интервала исследования определяется с каждым новым расчётом (в методе дихотомии необходимо на каждом шаге выполнять два расчёта). В интервал исследования попадет предыдущий расчёт и для продолжения поиска достаточно произвести расчёт симметрично имеющемуся. Допустим, задано число расчётов (шагов) N. Необходимо их произвести так, чтобы интервал, в котором лежит оптимум, был минимальным. Числа Фибоначчи, используемые в этом методе, определяются следующим образом: FN=FN-1+FN-2 F0=F1=1 Алгоритм метода Фибоначчи состоит из следующих этапов: 1) Изменяют масштаб исходного интервала, в котором лежит оптимум. В качестве единицы измерения принимают 1=X₀/FN, или если задана длина l, в котором лежит оптимум, находят его на исходном интервале длиной X₀. Для этого, разделив X₀ на 1, находят ближайшее большее число Фибоначчи FN, 2) Расставляют первые две точки и на интервале исследования X0 на расстоянии FN-2 от конца b. 3) Вычисляют значение целевой функции в этих точках для сужения интервала исследования. Пусть > , тогда интервал [ , FN] исключается из рассмотрения. 4) На новом интервале исследования снова расставляют две точки и , но в одной из них уже известно значение целевой функции = . 5) Переходят к этапу 3 и т.д., пока не достигают искомого интервала, в котором находится значение переменной, максимизирующее её целевую функцию. На рис. 6 показан процесс сужения интервала исследования:
Рис. 6. Процесс сужения интервала исследования. Последний N–й расчёт определяет интервал длиной l, в котором находится экстремум целевой функции.
Дата добавления: 2017-02-01; Просмотров: 78; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |