Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод равномерного поиска




Методы оптимизации функций одной переменной

Алгоритм нахождения максимума функции

Простейшая задача нахождения максимума функции решается по следующему алгоритму:

1. Задаются границы a и b, в пределах которых имеется максимум функции.

2. Интервал [a,b] разбивается на определенное количество шагов.

3. Функция табулируется в пределах заданного интервала, и каждое вычисленное значение функции сравнивается с максимальным (заданным до начала табулирования).

4. Находится максимальное значение функции на заданном интервале с определенным шагом и выводится на печать.

БЛОК-СХЕМА АЛГОРИТМА ИМЕЕТ ВИД:

Рис. 4. Блок – схема алгоритма нахождения максимума функции

Естественно, что с уменьшением шага изменения аргумента точность вычисления максимума увеличивается.

Можно воспользоваться и следующим алгоритмом:

1. Найти значение максимума по алгоритму, представленному выше.

2. Для дальнейшего рассмотрения выбрать отрезок [xmax-dx, xmax+dx] и выполнить вычисление максимума с шагом, например, dx/10.

3. Сравнить два найденных значения.

max1 – значение максимума с шагом dx и max2 – значение максимума с шагом dx/10. Если |max2-max1| <=E (где Е – заданная степень точности вычисления), то закончить решение задачи и max2 вывести на печать, если нет, то вычисление продолжить дальше, повторяя п.2.

Такую задачу удобнее решать, используя процедуру нахождения максимального значения функции.

Блок – схема решения задачи имеет вид:

Рис. 5. Блок – схема алгоритма нахождения максимума функции

Этот метод основан на том, что переменной x присваиваются значения x+∆x с шагом ∆x = const и вычисляются значения F(x). Если F(x n+1)>F(xn), переменной x даётся новое приращение. Как только F(xn+1)станет меньше F(x) поиск останавливается. При малой заданной погрешности этот метод неэкономичен по затратам машинного времени.




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 256; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.