Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вільні електромагнітні коливання у контурі. Перетворення енергії в коливальному контурі. Власна частота коливань у контурі




Отримати електромагнітні коливання так само просто, як і примусити тіло коливатися, відтягнувши його на пружині. А спостерігати не просто, оскільки безпосередньо ми не бачимо ні заряду конденсатора, ні струму в котушці. Вільними називаються коливання в системі, що виникають після виведення її із стану рівноваги і надаючи їй стану спокою.

Періодичні чи майже періодичні зміни заряду, сили струму і напруги називають електромагнітними коливаннями. Зазвичай ці коливання відбуваються з дуже великою частотою. Їх досліджують за допомогою спеціального приладу - осцилографа. Як і механічні коливання, електромагнітні коливання можуть бути вільними і вимушеними.

Вільні електромагнітні коливання виникають під час розряджання конденсатора через котушку індуктивності.

Вимушеними електромагнітними коливаннями називаються коливання в колі під дією зовнішньої періодичної ЕРС. Змінна ЕРС виникає під час обертання замкненого провідника в однорідному магнітному полі.

Найпростіша система, в якій можуть виникнути вільні електромагнітні коливання, складається із послідовно з'єднаних конденсатора ємністю С і котушки індуктивності L, приєднаної до його обкладок. Таку систему називають коливальним контуром (рис.5.2.1).

.

Зарядимо конденсатор від зовнішнього джерела струму. При цьому конденсатор отримає енергію

.

Після підключення до конденсатора котушки індуктивності, отримаємо замкнене коло. Конденсатор почне розряджатися і в колі з'явиться електричний струм. Струм у колі не одразу досягне максимального значення, а збільшуватиметься поступово. Це зумовлено явищем самоіндукції. З появою струму виникає змінне магнітне поле. Це змінне магнітне поле породжує вихрове електричне поле в провіднику, яке внаслідок наростання магнітного поля діє проти струму і протидіє його миттєвому збільшенню (правило Ленца).

У міру розряджання конденсатора енергія електричного поля буде зменшуватись, але водночас буде зростати енергія магнітного поля струму, яку визначають за формулою:

.

У момент часу, коли конденсатор повністю розрядився (q = 0), енергія електричного поля набуває нульового значення. Енергія магнітного поля струму згідно із законом збереження енергії буде максимальною . У цей момент струм досягає максимального значення Imax.

Однак на цьому процес коливань у контурі зупинитися не може, бо з цього часу за рахунок самоіндукції підтримується струм у колі, що зумовлює перезарядження конденсатора. На цьому етапі енергія магнітного поля котушки знову перетворюється в енергію електричного поля конденсатора.

Коли б не було втрат енергії (наприклад, на подолання опору провідників, за якого енергія струму перетворюється в енергію провідників), то цей процес відбувався б нескінченно. Коливання стали б незагасальними. Через інтервали часу, що дорівнюють періоду коливань, стани системи повторювались би і значення енергії (магнітного і електричного полів) було б максимальним:

.

А в будь-який інший час

.

Порівнюючи коливання в коливальному контурі з механічними коливаннями (наприклад, пружинного маятника), бачимо, що індуктивність котушки виконує таку ж роль, як і маса в пружинному маятнику (L m):

; .

Бачимо, що коефіцієнт жорсткості k для пружинного маятника в контурі "виконує роль" величини 1/С (k 1/ C), це дозволяє записати формулу для періоду коливань у коливальному контурі: оскільки ; а k 1/ C, L m, то , або

. (5.2.1)

Формула (5.2.1) називається формулою Томсона. Перетворення енергії в коливальному контурі приводить до зміни величини заряду, сили струму і напруги за законом синуса або косинуса. Тому такі електромагнітні коливання є гармонічними. Знайдемо рівняння, що описує вільні електромагнітні коливання в контурi. Оскільки повна енергія коливального контуру залишається сталою в будь-який момент часу, якщо R = 0, то похідна від повної енергії за часом дорівнюватиме нулю:

або

. (5.2.2)

Фізичний зміст рівності (5.2.2) полягає в тому, що швидкість зміни енергії магнітного поля за модулем дорівнює швидкості зміни енергії електричного поля. Знак "-" вказує на те, що коли енергія електричного поля збільшується, то енергія магнітного поля зменшується (і навпаки). Саме тому не змінюється повна енергія.

У рівнянні (5.2.2) візьмемо похідну:

. (5.2.3)

Але похідна заряду за часом - це сила струму в певний момент часу:

.

Тому рівняння (5.2.3) можна записати так:

. (5.2.4)

Похідна сили струму за часом є не що інше, як друга похідна заряду за часом, подібно до того, як похідна прискорення - це друга похідна координати за часом. Підставивши у рівняння (5.2.4) I' = q" і поділивши ліву й праву частини цього рівняння на LI, дістанемо основне рівняння, яке описує вільні електромагнітні коливання в контурі:

,

де q" - друга похідна заряду за часом. Розв'язком цього рівняння є вираз:

.

Позначимо через w0, що виражає циклічну частоту (кількість коливань у контурі за час 2p секунд). Основне рівняння набуде вигляду

q" = – w02 q.

Знаючи період, можна визначити і власну частоту: - частота вільних електромагнітних коливань в контурі; n - вимірюють у герцах (Гц); 1 Гц відповідає одному електромагнітному коливанню за 1 с.

27. Температура, її фізичний зміст. Вимірювання температури. Температурні шкали.

З точки зору молекулярно-кінетичних уявлень температура є мірою середньої кінетичної енергії молекул, тобто мірою інтенсивності теплового руху молекул. Тому із зростанням інтенсивності руху збільшуватиметься температура тіла, яка характеризує міру нагрітості тіла. Поняття температури не може бути застосоване до однієї або кількох молекул. Числове значення температури чисельно пов’язано з величиною середньої кінетичної енергії молекул:

 

(114)

де - середня швидкість молекул, ;

-стала Больцмана; = 1,38·10-23 .

Кінетичну енергію молекул безпосередньо виміряти не можна. Тому для вимірювання температури використовують залежність від неї певних властивостей речовини (теплового розширення, електричного опору, тощо).

відносно нерухомих положень рівноваги. Рух молекул у всіх трьох напрямках в просторі відповідає потенціальній і кінетичній енергії. Молекули рідин також здійснюють коливання, які супроводжуються багаточисленними співударами. Молекули рухаються з великими швидкостями (порядку 103 ). Багато фізичних властивостей залежать від температури:

- об’єм тіла (а, відповідно, і його розміри), як правило, збільшується з підвищенням температури;

- при підвищенні температури речовина переходить у рідкий, а потім у газоподібний агрегатний стан;

- у металах питомий електричний опір зростає з підвищенням температури, а в напівпровідниках зменшується;

- електрична напруга термоелемента збільшується з підвищенням температури.

Більшість фізичних величин, які залежать від температури, використовують для вимірювання температури.

Температура характеризує стан тіла незалежно від його маси і хімічного складу. Тому температуру називають параметром стану.

Таблиця 27

Співвідношення між одиницями вимірювання температур.

Темпера-турні шкали та їх умовне позначен-ня Температура Абсо-лютний нуль Співвідношення між градусами різних шкал Переведення температури в градуси шкал Цельсія та Кельвіна
Кипін- ня во-ди Плав-лення льоду
Кельвіна, К 373,2 273,2   1К=1°С=0,8°R =1,8°F п°К=(п-273,3) °С
Цельсія, °С     -273,2 1°С=0,8°R=1,8°F=1К п°Ñ =(п +2 73,2) К
Фарен-гейта, °F     -459,79 1°F=0,556°С=0,445°= 0,556К п°F= (п32)°С= [ (п-32)+273,2] К
Реомюра, °R     -218,56 1°R=1,25°С=2,25°F= 1,25 К п°R= п°С=( п°+273,2) К

 

У СІ для вимірювання температури прийнята шкала Кельвіна, де одиницею вимірювання температури є Кельвін (1 К). Міжнародна температурна шкала була прийнята в 1927 р. і заснована на 6 постійних і відтворюваних реперних точках. Після цього вона була переглянута із внесенням деяких коректив (1948 р. та в 1968 р.). В нашій країні (1976 р.) встановлені практичні температурні шкали, які забезпечують єдність вимірювання температур різними методами в діапазоні від 0,01 до 105 К. Виміряні за цими шкалами температури близькі до термодинамічних. З 1990 р. введена нова міжнародна шкала температур (МТШ-90), в якій основною реперною точкою залишилося значення температури потрійної точки води. При цьому °С>К на 3·10-4 .

У нашій і в більшості європейських країнах поширена шкала Цельсія, а в деяких англосаксонських країнах (Великобританія, США, Канада, Австралія та ін.) користуються шкалами Фаренгейта та Ренкіна. Шкала Реомюра нині майже не застосовується.

Оскільки певний фізичний зміст становить лише різниця між значенням кінетичної енергії, то вибір нульової точки температури є питанням зручності. Це й пояснює існування кількох температурних шкал (табл. 27).

Температура – це єдина фізична величина, яка має два позначення (Т і t) в залежності від застосовуваних одиниць. Т – температура в Кельвінах (К) або абсолютна температура, t – температура в градусах Цельсія (°С). якщо вони зустрічаються в одному і тому ж рівнянні, то їх не скорочують. Скорочення можна робити для різниці температур і .

Залежно від температурного інтервалу й необхідної точності температуру вимірюють за допомогою термометрів, термопар, термоопорів та пірометрів

 




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 130; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.152 сек.