Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Перевод целых чисел из одной позиционной системы счисления в другую




 

При переводе целых чисел из десятичной системы счисления в систему с основанием P > 1 обычно используют следующий алгоритм:

Если переводится целая часть числа, то она делится на P, после чего запоминается остаток от деления. Полученное частное вновь делится на P, остаток запоминается. Процедура продолжается до тех пор, пока частное не станет меньше основания P. Остатки от деления на P выписываются в порядке, обратном их получению.

Пример 1. Перевести десятичное число 173(10) в восьмеричную и шестнадцатеричную системы счисления.

а) 173(10)=255(8);

 

     
     
5   2
  5  

 

б) 173(10)=AD(16);

шестнадцатеричная система P=16

цифры                     A B C D E F
                                 

 

   
  10
13  
 

Пример 2. Перевести десятичное число 11(10) в двоичную систему счисления.

Иногда более удобно записать алгоритм перевода в форме таблицы.

Делимое        
Делитель        
Остаток        

 

При переводе чисел из системы счисления с основанием P в десятичную систему счисления необходимо пронумеровать разряды целой части справа налево, начиная с нулевого, и дробной части, начиная с разряда сразу после запятой, слева направо (начальный номер –1). Затем вычислить сумму произведений соответствующих значений разрядов на основание системы счисления в степени, равной номеру разряда. Это и есть представление исходного числа в десятичной системе счисления.

 

Пример 3. Перевести данное число в десятичную систему счисления:

а) 1000001(2).

1000001(2) = 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20 = 64 + 1 = 65(10).

Замечание. Если в каком-либо разряде стоит нуль, то соответствующее слагаемое можно опускать.

б) 1000011111,0101(2).

1000011111,0101(2) = 1 × 29 + 1 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20 + 1 × 2–2 + 1 × 2–4 =

= 512 + 16 + 8 + 4 + 2 + 1 + 0,25 + 0,0625 = 543,3125(10).

в) 1216,04(8).

1216,04(8) = 1 × 83 + 2 × 82 + 1 × 81 + 6 × 80 + 4 × 8–2 = 512 + 128 + 8 + 6 + 0,0625 = =654,0625(10).

г) 29A,5(16).

29A,5(16) = 2 × 162 + 9 × 161 + 10 × 160 + 5 × 16–1 = 512 + 144 + 10 + 0,3125 = 656,3125(10).

 




Поделиться с друзьями:


Дата добавления: 2017-02-01; Просмотров: 98; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.