Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 10.3





На предприятии имеется четыре технологических способа изготовления изделий А и Б из некоторого сырья. В таблице указано количество изделий, которое может быть произведено из единицы сырья каждым из технологических способов.

Записать в математической форме условия выбора технологий при производстве из 94 ед. сырья 574 изделий А и 328 изделий Б.

Изделие Выход из единицы сырья
способ I II III IV
А
Б

Решение. Обозначим через x1, x2, x3, x4 количество сырья, которое следует переработать по каждой технологии, чтобы выполнить плановое задание. Получим систему трех линейных уравнений с четырьмя неизвестными:

x1 + x2 + x3 + x4 = 94,

2x1 + x2 + 7x3 + 4x4 = 574,

6x1 +12x2 +2x3 + 3x4 = 328.

Решаем ее методом Гаусса:

Для заметок

                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 



 

Имеем: r (А) = r () = 3, следовательно, число главных неизвестных равно трем, одно неизвестное x4 - свободное. Исходная система равносильна следующей:

x1 + x2 + x3 = 94 - x4,

- x2 + 5x3 = 386 - 2x4,

26x3 = 2080- 9x4.

Из последнего уравнения находим x3 = 80 - 9/26 x4, подставляя x3 во второе уравнение, будем иметь: x2 = 14 + 7/26x4 и, наконец, из первого уравнения получим: x1 = - 12/13 x4. С математической точки зрения система имеет бесчисленное множество решений, т. е. неопределенна. С учетом реального экономического содержания величины x1 и x4 не могут быть отрицательными, тогда из соотношения x1 = - 12/13 x4 получим: x1 = x4 = 0. Тогда вектор (0, 14, 80, 0) является решением данной системы.





Дата добавления: 2014-01-04; Просмотров: 188; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. I. Затрудненный выброс крови из желудочков (например, стеноз аорты, клапанный стеноз a, pulmonalls и коарктация аорты)
  2. IV. Примеры расчетов потребностей в сырье по индивидуальным и среднегодовым нормам.
  3. LZ-алгоритмы распаковки данных. Пример 13.6
  4. LZ-алгоритмы распаковки данных. Примеры
  5. LZ77-алгоритм распаковки данных. Пример 12.4
  6. Билет№5:Методологические основы менеджмента. Ситуационный, системный и процессный подход к принятию управленческих решений (привести примеры).
  7. В приведенном примере укажите тезис (если тезис явно не выражен, сформулируйте его), определите способ аргументации.
  8. В ст.131 ГК установлены основные положения о примерном перечне вещных прав, подлежащих регистрации, обязательности государственной регистрации и органе, ее осуществляющем.
  9. Виды и примерная структура документов
  10. Вопрос 68. Филогенез опорно-двигательной системы. Онтофилогенетические пороки костной и мышечной систем. Примеры.
  11. Вопрос 70. Филогенез кровеносной системы хордовых животных. Онтофилогенетические пороки развития сердца и кровеносных сосудов. Примеры.
  12. Вопрос 71. Филогенез мочеполовой системы позвоночных. Эволюция нефрона и мочеполовых протоков. Примеры.

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.004 сек.