Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример 10.4




Математическая модель межотраслевого баланса.

Модель межотраслевого баланса, разработанная профессором В. Леонтьевым (Гарвардский университет, США), имеет вид:

, (10.6)

или, в матричной форме,

AX + Y = X, (10.7)


где А = (a i j) - матрица коэффициентов прямых затрат, Х - вектор валовых выпусков, Y - вектор конечного продукта.

Перепишем систему (5.13) в виде

(E - A) X = Y, (10.8)

где E - единичная матрица n-го порядка, тогда решение системы (5.14) относительно неизвестных значений объемов производства продукции при заданном векторе конечного продукта находится по формуле

X = (E - A)-1 Y. (10.9)

Здесь (E - A)-1 - матрица коэффициентов полных затрат. Элемент b i j матрицы (E - A)-1 характеризует потребность в валовом выпуске отрасли i, который необходим для получения в процессе материального производства единицы конечного продукта отрасли j. Благодаря этому имеется возможность рассматривать валовые выпуски x i в виде функций планируемых значений y j конечных продуктов отраслей:

.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 248; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.