Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Диагональные матрицы


Ступенчатые матрицы; сведение матрицы к ступенчатой

 

Определение 9.5: Ступенчатой называется матрица такого вида:

этого столбца (столбцов) могло и не быть

/при переходе к следующей строке «вниз» идем не более, чем на один ненулевой элемент; слева направо последующая строка может увеличиться и на несколько нулевых элементов/

Нулевая матрица, по определению, также является ступенчатой.

Справедлива следующая теорема Гаусса:

Всякая матрица эквивалентна некоторой ступенчатой матрице.

Эту теорему доказываем методом математической индукции по числу строк матрицы А:

1. n=2, т.е. ;

 

 

Не ограничивая общности, можно считать, что , ибо если , а , то меняем местами первую и вторую строки.

Из второй строки матрицы А вычтем первую, умноженную на . Получим:

— ступенчатая матрица.

2. Шаг индукции. Пусть .

Можно считать, что первый столбец матрицы А ненулевой, т.е. при некотором j. Тогда, меняя, в случае необходимости первую и j-ую строки местами, получим, что (для новой матрицы). Вычитая из j-й строки (j=2,3,...,k,k+1) первую, умноженную на , получим:

 

–– ступенчатая матрица.

Матрица, получившаяся в правом нижнем углу матрицы А, состоит из k строк, и поэтому она сводится к ступенчатой по индуктивному предположению.

Теорема Гаусса доказана.

 

Определение 9.6: Матрица называется диагональной, если все её элементы, стоящие вне главной диагонали, равны нулю.

Имеет место следующая теорема:

Всякая невырожденная матрица эквивалентна некоторой диагональной и единичной.

Теорему доказываем методом математической индукции по порядку матрицы.

1. База индукции: пусть n=2.

, т.е.

Из 1-ой строки вычитаем 2-ую, умноженную на – диагональная матрица.

2. Шаг индукции:

Заметим, что (более того, для любого j=1,2,…,k,k+1), ибо (см параграф 3 , п.3.3) . Тогда, вычитая из j-ой строки (k+1)-ю (j=1,2,…,k), умноженную на , получим, что:

(9.1)

матрица k-го порядка, которая, по индуктивному предположению, сводится к диагональной.

 

А поделив j-ю строку (j=1,2,…,k,k+1) на (как уже отмечалось ранее, для любого j), получим единичную матрицу.

Теорема доказана.

 

<== предыдущая лекция | следующая лекция ==>
Эквивалентные матрицы и системы | Определение ранга матрицы

Дата добавления: 2014-01-04; Просмотров: 296; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.