КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Это фундаментальный закон возрастания точности при росте числа измерений
Ошибка характеризует точность, с которой получено среднее значение измеренной величины . Результат записывается в виде: . (9) Эта методика расчета ошибок дает хорошие результаты (с надежностью 0.68) только в том случае, когда одна и та же величина измерялась не менее 30 – 50 раз. В 1908 году Стьюдент показал, что статистических подход справедлив и при малом числе измерений. Распределение Стьюдента при числе измерений n → ∞ переходит в распределение Гаусса, а при малом числе отличается от него. Для расчета абсолютной ошибки при малом количестве измерений вводится специальный коэффициент, зависящий от надежности P и числа измерений n, называемый коэффициентом Стьюдента t. Опуская теоретические обоснования его введения, заметим, что Δx = ·t, (10) где Δx — абсолютная ошибка для данной доверительной вероятности; Коэффициенты Стьюдента приведены в таблице 1.
Из сказанного следует: 1. Величина среднеквадратичной ошибки позволяет вычислить вероятность попадания истинного значения измеряемой величины в любой интервал вблизи среднего арифметического. При n → ∞ → 0, т.е. интервал, в котором с заданной вероятностью находится истинное значение μ, стремится к нулю с увеличением числа измерений. Казалось бы, увеличивая n, можно получить результат с любой степенью точности. Однако точность существенно увеличивается лишь до тех пор, пока случайная ошибка не станет сравнимой с систематической. Дальнейшее увеличение числа измерений нецелесообразно, т.к. конечная точность результата будет зависеть только от систематической ошибки. Зная величину систематической ошибки, нетрудно задаться допустимой величиной случайной ошибки, взяв ее, например, равной 10% от систематической. При обработке результатов прямых измерений предлагается следующий порядок операций: 1. Результат каждого измерения запишите в таблицу. 2. Вычислите среднее значение из n измерений . 3. Найдите погрешность отдельного измерения . Вычислите квадраты погрешностей отдельных измерений (Δ x 1)2, (Δ x 2)2,..., (Δ x n)2. 4. Определите среднеквадратичную ошибку среднего арифметического . 5. Задайте значение надежности (обычно берут P = 0.95). 6. Определите коэффициент Стьюдента t для заданной надежности P и числа произведенных измерений n. 7. Найдите доверительный интервал (погрешность измерения) Δ x = · t. 8. Если величина погрешности результата измерения Δx окажется сравнимой с величиной погрешности прибора δ, то в качестве границы доверительного интервала возьмите . Если одна из ошибок меньше другой в три или более раз, то меньшую отбросьте. 9. Окончательный результат запишите в виде . 10. Оцените относительную погрешность результата измерений .
Рассмотрим на числовом примере применение приведенных выше формул. Пример. Измерялся микрометром диаметр d стержня (систематическая ошибка измерения равна 0.005 мм). Результаты измерений заносим во вторую графу таблицы, находим и в третью графу этой таблицы записываем разности , а в четвертую – их квадраты (таблица 2). Таблица 2
мм мм. Задавшись надежностью P = 0.95, по таблице коэффициентов Стьюдента для шести измерений найдем t = 2.57. Абсолютная ошибка найдется по формуле (10). Δd = 0.01238 · 2.57 = 0.04 мм. Сравним случайную и систематическую ошибки: , следовательно, δ = 0.005 мм можно отбросить. Окончательный результат запишем в виде d = (4.01 ± 0.04) мм при Р = 0.95.
Дата добавления: 2014-01-04; Просмотров: 558; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |