Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уравнения состояния




Параметры, совокупностью которых определяется состояние системы, связаны друг с другом. При изменении одного из них изменяется по крайней мере хотя бы еще один. Эта взаимосвязь параметров находит выражение в функциональной зависимости термодинамических параметров.

Уравнение, связывающее термодинамические параметры системы в равновесном состоянии (например, для однородного тела – давление, объем, температура) называется уравнением состояния. Общее число уравнений состояния системы равно числу ее степеней свободы (вариантности равновесной системы), т.е. числу независимых параметров, характеризующих состояние системы.

При изучении свойств равновесных систем термодинамика прежде всего рассматривает свойства простых систем. Простой системой называют систему с постоянным числом частиц, состояние которой определяется только одним внешним параметром «а» и температурой, т.е. простая система—это однофазная система, определяемая двумя параметрами.

Так, уравнение

является уравнением состояния чистого вещества при отсутствии внешних электрических, магнитных, гравитационных полей. Графически уравнение состояния выразится поверхностью в координатах P - V - T, которую называют термодинамической поверхностью. Каждое состояние системы на такой поверхности изобразится точкой, которую называют фигуративной точкой. При изменении состояния системы фигуративная точка перемещается по термодинамической поверхности, описывая некоторую кривую. Термодинамическая поверхность представляет геометрическое место точек, изображающих равновесное состояние системы в функциях от термодинамических параметров.

Вывести уравнение состояния на основе законов термодинамики нельзя; они или устанавливаются из опыта, или находятся методами статистической физики.

Уравнения состояния связывают температуру Т, внешний параметр аi (например, объем) и какой-либо равновесный внутренний параметр bk (например, давление).

Если внутренним параметром bk является внутренняя энергия U, то уравнение

называется уравнением энергии или калорическим уравнением состояния.

Если внутренним параметром bk является сопряженная внешнему параметру аi сила Аi (например, давление Р является силой объема V), то уравнение

называется термическим уравнением состояния.

Термические и калорические уравнения состояния простой системы имеют вид:

и .

Если А = Р (давление) и, следовательно, а = V (объем системы), то уравнения состояния системы запишутся соответственно:

и .

Например, при изучении газообразного состояния используют понятие идеального газа. Идеальный газ представляет собой совокупность материальных точек (молекул или атомов), находящихся в хаотическом движении. Эти точки рассматриваются как абсолютно упругие тела, обладающие нулевым объемом и не взаимодействующие между собой.

Для такой простой системы как идеальный газ термическим уравнением состояния является уравнение Клапейрона-Менделеева

, (1.5)

где Р – давление, Па; V – объем системы, м3; n – количество вещества, моль; Т – термодинамическая температура, К; R – универсальная газовая постоянная:

.

Калорическим уравнением состояния идеального газа является закон Джоуля о независимости внутренней энергии идеального газа от объема при постоянной температуре:

, (1.6)

где СV – теплоемкость при постоянном объеме. Для одноатомного идеального газа СV не зависит от температуры, поэтому

,

или, если Т 1 = 0 К, то .

Для реальных газов эмпирически установлено более 150 термических уравнений состояния. Наиболее простым из них и качественно правильно передающим поведение реальных газов даже при переходе их в жидкость является уравнение Ван-дер-Ваальса:

, (1.7)

или для n молей газа:

.

Это уравнение отличается от уравнения Клапейрона-Менделеева двумя поправками: на собственный объем молекул b и на внутреннее давление а / V 2, определяемое взаимным притяжением молекул газа (а и b – константы, не зависящие от Т и Р, но разные для различных газов; в газах с бóльшим а при постоянных Т и V давление меньше, а с бóльшим b – больше).

Более точными двухпараметрическими термическими уравнениями состояния являются:

первое и второе уравнения Дитеричи:

и ; (1.8)

уравнение Бертло:

; (1.9)

уравнение Редлиха-Квонга:

. (1.10)

Приведенные уравнения Бертло, Дитеричи и особенно Редлиха-Квонга имеют более широкую область применимости, чем уравнение Ван-дер-Ваальса. Следует отметить, однако, что постоянные а и b для данного вещества не зависят от температуры и давления только в небольших интервалах этих параметров. Двухпараметрические уравнения типа Ван-дер-Ваальса описывают и газообразную, и жидкую фазы, и отражают фазовый переход жидкость-пар, а также наличие критической точки этого перехода, хотя точных количественных результатов для широкой области газообразного и жидкого состояний с помощью этих уравнений при постоянных параметрах а и b получить не удается.

Изотермы идеального и реального газов, а также газа Ван-дер-Ваальса представлены на рис. 1.1.

 
 

 

 


Рис. 1. Изотермы различных газов.

 

Точное описание поведения реального газа можно получить с помощью уравнения, предложенного в 1901 году Каммерлинг-Оннесом и Кизомом и получившего название уравнения состояния с вириальными коэффициентами или вириального уравнения состояния:

, (1.11)

которое записывается как разложение фактора сжимаемости

по степеням обратного объема. Коэффициенты В 2(Т), В 3(Т) и т.д. зависят только от температуры, называются вторым, третьим и т.д. вириальным коэффициентом и описывают отклонения свойств реального газа от идеального при заданной температуре. Вириальные коэффициенты Вi (Т) вычисляются из опытных данных по зависимости PV для заданной температуры.





Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 3947; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.