Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Напівпровідникові структури


7.16.1. Однорідні напівпровідникові кристали використовують для виготовлення серії приладів: терморезисторів, фоторезисторів, тензодатчиків, де реалізується залежність опору кристалу від температури, освітленості, зовнішнього тиску. Але значно ширше використовуються прилади (діоди, транзистори, фотодіоди, світлодіоди, лазери, мікросхеми, процесори ЕОМ тощо), виготовлені з використанням напівпровідникових структур: електронно-діркових переходів(p-n–переходів) і бар’єрів Шоткі. Зокрема, бар’єр Шоткі – це контакт металу і напівпровідника із спеціально підібраними роботами виходу електронів з них. Електронно-дірковий перехід – це контакт двох областей одного кристалу з різними типами провідності (p- і n-) (рис. 7.33)

Основними носіями в p-області є дірки з концентрацією p, в n-області – електрони з концентрацією n. В цей же час у цих областях є і неосновні носії: електрони в p-області з концентрацією np і дірки в n-області з концентрацією pn. Оскільки повинні виконуватись співвідношення , а в симетричному p-n-переході і p = n, то мають місце нерівності

.

Таким чином, на границі областей реалізується сильний градієнт концентрацій електронів і дірок, що викликає дифузію електронів з n-області в p-область і дірок з p-області в n-область. Ці дифузійні потоки описуватимемо як дифузійний струм основних носіїв з густинами та (рис. 7.33). В об’ємі областей локальна нейтральність забезпечується виконанням рівностей і (рис. 7.31). В приконтактних областях нейтральність порушується: приконтактний шар p-області заряджається негативно (заряд нескомпенсованих акцепторів), а приконтактний шар n-області заряджається позитивно (заряд нескомпенсованих донорів). Отже, виникає контактне електричне поле у вигляді подвійного зарядженого шару. Це поле перешкоджає подальшій дифузії основних носіїв, тобто виникає для них потенціальний бар’єр висотою . До такого ж результату можна прийти і з термодинамічних міркувань. Дійсно, рівновага між областями настане, коли вирівняються енергії Фермі в обох областях: . Якщо на рис. 7.31 енергетичну діаграму p-типу зафіксувати (умовно заземлити p-область), то енергетичну діаграму n-типу потрібно опустити так, щоб вирівнялась енергія Фермі. А це призведе до викривлення зон і виникнення бар’єру (рис. 7.33).



Оскільки в області контактного поля рівень Фермі розміщений посередині забороненої зони, що відповідає власному напівпровіднику, то концентрація носіїв в цій області дуже мала , а значить, опір дуже великий. І тому ця область називається запірним шаром. Ширина цього шару

тим менша, чим сильніше леговані n- і p- області: .

Густина дифузійних струмів основних носіїв визначаються висотою потенціального бар’єру:

. (7.111)

В цей же час для неосновних носіїв бар’єру немає; більш того, контактне поле прискорює ці носії, викликаючи дрейфові струми неосновних носіїв густиною . Густина дрейфового струму лінійно залежить від напруженості контактного поля (закон Ома), тобто значно слабше від експоненційної залежності для густини дифузійного струму. І тому дрейфові струми наближено можна вважати постійними. Оскільки вектори густин дифузійного і дрейфового струмів напрямлені протилежно, то повний струм через p-n-перехід в рівноважних умовах дорівнює нулю, тобто

.

7.16.2. Прикладемо до p-n-стуктури зовнішню наругу так, як показано на рис. 7.34; таке ввімкнення називається прямим. В цьому випадку напруженість зовнішнього поля напрямлена протилежно до , і тому напруженість результуючого поля зменшиться, потенціальний бар’єр понизиться на і стане рівним . Якщо p-область вважати умовно заземленою, то рівень Фермі в n-області підніметься на .

У відповідності з (7.111) густини дифузійних струмів основних носіїв зростуть і стануть рівними

(7.113)

Одночасно з тим p-область збагатиться додатковими неосновними носіями (електронами), а n-область – дірками. Має місце інжекція неосновних носіїв струму. Оскільки густина дрейфового струму неосновних носіїв через p-n–перехід залишається практично незмінною (рівноважною), то густина повного струму

. (7.114)

Врахувавши, що , після підстановки (7.111) та (7.113) отримаємо густину прямого струму

(7.115)

де – сумарна густина дрейфового струму неосновних носіїв.

Експоненційний ріст прямого струму з ростом Uз має місце до тих пір, доки Uз < j0. Якщо ж Uз ≥ j0, бар’єр на p-n-переході зникає, і залежність струму від напруги стає лінійною, у відповідності з законом Ома.

Якщо прикласти до p-n-структури зовнішню напругу так, як показано на рис. 7.35, то таке ввімкнення називається зворотним. У цьому випадку напрямки контактного і зовнішнього полів співпадають, результуюче поле збільшиться, бар’єр зросте на еUз і стане рівним е(Uз + j0). При практично незмінному дрейфовому струмі неосновних носіїв струм основних носіїв зменшиться. І через p-n-перехід протікатиме слабкий зворотний струм з густиною

. (7.116)

Формули (7.115) та (7.116) можна об’єднати і користуватися лише першою, вважаючи пряму напругу додатною, а зворотну – від’ємною. Вольт-амперна характеристика p-n-переходу, у відповідності з (7.115), матиме вигляд, показаний на рис. 7.36. Оскільки при кімнатній температурі , то вже при зворотній напрузі зворотний струм насичується і його густина стає рівною , а відношення при вказаній напрузі перевищує три порядки. Отже, p-n-перехід (напівпровідниковий діод) забезпечує пропускання струму лише в одному напрямку, тобто випрямляє змінний струм.

<== предыдущая лекция | следующая лекция ==>
Електропровідність металів і напівпровідників | Склад і характеристики ядра

Дата добавления: 2014-01-04; Просмотров: 284; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. Алгоритми функціонування складної структури
  2. Аналіз рівня, динаміки та структури фінансових результатів підприємства
  3. Аналіз структури майна та динаміки джерел його формування
  4. Аналіз структури основних виробничих фондів. Аналіз показників використання основних фондів. Аналіз показників використання оборотних засобів .
  5. В теорії господарського права такі організаційні структури визначаються як господарські системи, в теорії цивільного та адміністративного права – як складні юридичні особи.
  6. Вертифікація -статичні, напівстатичні і динамічні структури. Класифікація структур даних.
  7. Визначення оптимальної структури фінансового капіталу
  8. Вплив нововведень на зміну організаційної структури
  9. ДЕФЕКТИ СТРУКТУРИ ВІДЛИВОК
  10. Динамічні структури даних
  11. Етапи, способи здійснення та ефективність реструктуризації підприємств
  12. Ефективність функціональної структури СУОП.

studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.004 сек.