Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

П Л А Н. 2. Скалярний добуток та його властивості


1. Лінійні дії з векторами.

2. Скалярний добуток та його властивості.

3. Довжина вектора, кут між векторами, проекції.

4. Розклад вектора за базисом.

 

Скалярні величини характеризуються своїм числовим значенням (об’єм, маса, температура…). Векторні* –крім числового значення мають ще й напрям (сила, швидкість…).

*лат. Vector (переносник) ввів у 1848 р. Гамільтон

Геометрично векторна величина зображається напрямленим відрізком:

А В

Модуль вектора (його довжина) позначається .

До лінійних дій з векторами належать додавання і віднімання векторів, множення вектора на число.

1) Додавання.

а) правило трикутника

 
 


б) правило паралелограма

2) Віднімання

3) Множення вектора на число (скаляр)

 

 

 

Нульовим називається вектор, початок якого збігається з кінцем (). Напрям його невизначений, а довжина дорівнює 0.

Одиничним називається вектор, довжина якого дорівнює одиниці.

Одиничний вектор, напрям якого збігається з напрямом вектора називається ортом вектора і позначається

орт

2.та -одиничні вектори на осях х та у в координатній площині.

у

В

у

С

0 х

х

х – проекція на Ох

у – проекція на Оу

З

Напрям такий же, як і у орта , - у орта ; довжини:

- розклад вектора за ортонормованим Базисом на площині

-координати вектора

- ортонормований базис на площині.

Записують так:

В просторі ортонормований базис утворюють вектори

z

0 y

x


Якщо задано вектор , де А (x1; y1; z1) –початок вектора , В (x2; y2; z2) – кінець, то 21; у21; z2-z1).

Дії з векторами в координатній формі.

1) , якщо

2)

3)

Колінеарними називають вектори, якщо вони лежать на одній прямій або на паралельних прямих.


- умова колінеарності векторів, тобто якщо вектори колінеарні, то один з них можна виразити через другий.

Якщо вектори задані в координатній формі, то відповідні координати їх пропорційні:

Приклад: Чи колінеарні вектори

(-2; 1; -3) і (4; -2; -3) ?

Вектори не колінеарні

Три вектори називаються компланарними, якщо вони лежать в одній площині, або в паралельних площинах.

3. Скалярним добутком двох векторів називається добуток довжин цих векторів на косинус кута між ними

^

-число!

Властивості:

1)

2)

3)

4)

 

^

5) (), звідки

Скалярний добуток двох векторів, заданих координатами в прямокутній системі координат, дорівнює сумі добутків їхніх відповідних координат:

4. Довжина вектора в координатній формі:



Кут між векторами:

^

^

 

Напрямні косинуси вектора:

у

Напрямними косинусами вектора

називаються косинуси кутів, які

0 х вектор утворює з осями координат

Ох, Оу, Оz відповідно.

Тоді

(сума квадратів напрямних косинусів довільного вектора дорівнює 1).

Приклади:

1) При якому значенні у вектори будуть перпендикулярними?

(5; -4; 8)

(2; у-1; 4)

10-4 х (у-1)+32=46-4у

46-4у=0, у=

2) вектори і колінеарні, знайти х і z:

(х; 3; -2)

(2; 6; -z)

 

<== предыдущая лекция | следующая лекция ==>
Завдання додому. 1. Конспект, підготовка до практичного заняття | П Л А Н. 1. Конспект, підготовка до практичного заняття. 1. Конспект, підготовка до практичного заняття

Дата добавления: 2014-01-04; Просмотров: 254; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.01 сек.