Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

П Л А Н. 1. Однорідні лінійні різницеві рівняння




Завдання додому

 

Конспект; [4] с. 66 – 71

 

 

Питання для самоконтролю

 

1. Однорідні лінійні різницеві рівняння.

2. Неоднорідні лінійні різницеві рівняння.

 

 


Л Е К Ц І Я 31

 

Тема: Числові ряди. Основні поняття.

Мета: сформувати поняття числового ряду; ознайомити із збіжними і розбіжними рядами, властивостями збіжних рядів, необхідною умовою збіжності ряду

Література: [1, с. 493-497]; [6, с. 464-473].

1. Ряди. Основні значення.

2. Збіжність рядів, властивості збіжних рядів.

3. Необхідна умова збіжності

 

1. Нехай задано послідовність дійсних чисел u1, u2, u3, …un,…

Рядом називається вираз u1+ u2+ … +un +…, де u1, u2, u3 - члени ряду,

unзагальний член ряду.

 

Ряд вважається заданим, якщо його загальний член un заданий формулою,

 

Приклад 1:

Запишемо ряд:

Приклад 2: Записати формулу загального члена ряду

2. Нехай задано числовий ряд

u1+ u2+ u3 +… + un +…

 

Складемо частинні суми ряду:

...

...

Одержимо послідовність частинних сум

Якщо існує границя послідовності частинних сум ряду (дорівнює якомусь значенню S), то такий ряд називається збіжним:

- ряд збіжний,

S – сума ряду.

Якщо границя послідовності частинних сум ряду не існує, то ряд називається розбіжним.

 

Властивості збіжних рядів

 

1) Якщо Sn = S, то S – сума ряду.

2) Якщо ряд u1+ u2+ u3 +… + un +… збіжний, то збіжний і ряд

, де - число, причому сума такого ряду дорівнює

3) Нехай два ряди u1+ u2+ … + un +…

v1+ v2+ … + vn +… збіжні, тоді збіжний і ряд , а сума його дорівнює .

 

Зауваження: скорочений запис ряду

= u1+ u2+ … + un +…

Приклад: Знайти суму ряду

 

Знайдемо частинну суму Sn:

 

Знайдемо суму ряду:

S=Sn =

 
 


3. Необхідна умова збіжності ряду:

Якщо ряд збіжний, то

 

Достатня умова розбіжності ряду:

Якщо , то ряд розбіжний.

Приклад: Використовуючи необхідну умову збіжності, перевірити поведінку рядів:

1) 2) 3)

0

1) ==0,

отже ряд може бути збіжним або розбіжним.

2) =- ряд розбіжний

3) =- ряд розбіжний

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 318; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.