КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Правила присваивания истинностных значений
формулам (семантика языка). Чтобы определить интерпретацию для формулы логики предикатов следует задать: n общую область определения D для всех предметных переменных, входящих в формулу; n значения констант; n истинностные значения предикатов, входящих в формулу; n значения функций, входящих в формулу При этом: 1) каждой константе ставится в соответствие некоторый элемент из D; 2) каждому n-местному функциональному символу ставится в соответствие отображение из Dn в D (заметим, что Dn= 3) каждому n-местному предикатному символу ставится в соответствие отображение Dn в множество {И,Л}. Для каждой интерпретации формулы из области D формула может получать истинностное значение И или Л согласно следующим правилам: 1. если заданы значения формул G и H, то истинностные значения формул ùG,() получаются по табл. 2 логики высказываний. 2. G получает значение И, если G получает значение И для каждого x из D; в противном случае она получает значение Л. 3. получает значение И, если g получает значение И хотя бы для одного x из D;в противном случае она получает значение Л. 4. Формула, содержащая свободные переменные, не может получить истинностное соглашение. В логике предикатов действует следующее соглашение: формула либо не содержит свободных переменных, либо свободные переменные рассматриваются как константы. Пример: Оценим формулы а) b) c) в следующей интерпретации I: Л, И, И, И, Л, И. Для формулы а): если , то ИИ = И; если , то ЛЛ = Л. Так как в области D существует элемент, а именно , такой, что истинна, то а) истинна при интерпретации I. Для формулы b): если , то ЛИЛ; если x=2, то ИЛЛ. Т. к. в D не существует такого элемента, что истинна, что формула b),будет ложной при интерпретации I. Для формулы c): если , то Л. Следовательно, = Л для и для . Так как существует , а именно , такой, что ложно, то формула с) ложна при интерпретации I, т.е. эта формула опровергается интерпретацией I. Определим ряд важнейших понятий для логики предикатов. Непротиворечивая (выполнимая) формула - формула G выполнима (непротиворечива) тогда и только тогда, когда существует такая интерпретация I, что G имеет значение И в I. Если формула G есть И в интерпретации I, то I есть модель формулы G и I удовлетворяет G. Противоречивая формула – когда не существует никакой интер-претации, которая удовлетворяет G. Общезначимая формула – когда не существует никакой интер-претации I, которая не удовлетворяет G. Логическое следствие – формула G есть логическое следствие формул тогда и только тогда, когда для каждой интерпретации I, если истинна в I, то G также истинна в I. Замечание: Так как в логике предикатов количество областей определения предметных переменных ничем не ограничивается, т.е. их может быть бесконечное число, то имеется бесконечное число интерпретаций формулы. Следовательно, в отличие от логики высказываний, отсутствует возможность доказательства общезначимости или противоречивости формулы путем определения ее истинностных значений при всех возможных интерпретациях, даже в самых простых случаях. Поэтому доказательство теорем (достоверности рассуждений) в логике предикатов осуществляется только методом резолюций, однако имеющем свои особенности. Вернуться
Дата добавления: 2014-01-04; Просмотров: 280; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |