Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цели, назначение, практика

Что можно считать предметом для систем класса DSS? В качестве такого предмета на основании анализа уже сложившейся практики можно назвать:

  • финансовый анализ и прогнозирование;
  • маркетинг реализации и закупок;
  • анализ стереотипов клиентского поведения и выявление скрытых закономерностей;
  • анализ рисков;
  • управление активами.

Каким образом данные задачи соотносятся с общей задачей информационного обслуживания бизнеса? К информационному обслуживанию бизнеса можно отнести:

  • увязку стратегических задач бизнеса и ИТ;
  • распределение и контроль прикладного программного обеспечения;
  • оперативную поддержку пользователей; а также управление:
  • проектами;
  • производственными мощностями;
  • изменениями;
  • проблемами;
  • издержками;
  • непредвиденными ситуациями;
  • вспомогательными службами;
  • взаимоотношениями с клиентами;
  • взаимоотношениями с поставщиками.

Более укрупнено можно говорить о том, что информационные технологии сосредоточены на обслуживании процессов, связанных с:

  • людьми;
  • процессами;
  • стратегиями;
  • технологиями.

Как можно видеть, в сферу приложения систем DSS попадает почти половина структурных задач, возлагаемых на ИТ-службы. Это находит подтверждение при анализе рынка прикладных информационных систем. Так, мировой рынок, например, ERP-систем оценивается в настоящее время оборотами порядка 25 млрд. долларов. Рынок DSS-cистем, который возник только в середине 90-х годов, сейчас оценивается суммой порядка 10 млрд. долларов и растет существенно большими темпами, чем рынок корпоративных систем управления. Его рост порядка 30% в год против 10-15% роста ERP-рынка, и можно предположить, что в течение ближайших пяти лет можно ожидать достижения паритета. С другой стороны, если рынок систем DSS в настоящее время в основном связан с финансовым сектором, крупноформатной торговлей и телекоммуникациями, то можно ожидать постепенной ассимиляции функциональных возможностей DSS-систем в существующие системы ERP-класса, что, по-видимому, приведет к оживлению процессов обновления версий ERP-систем в корпоративном секторе.

Анализируя тенденции развития функциональности ERP-систем, можно уверенно говорить о том, что этот процесс уже идет. Так, практически во всех ведущих ERP-системах уже имплементированы функциональные возможности прогнозирования с использованием разнообразных статистических методов. Представляется очень перспективным развитие подходов DSS-систем в управлении активами, в частности, в организации эксплуатации и ремонтов оборудования. Это связано с постепенной миграцией подходов, а именно, от управления ремонтами по состоянию, к управлению на основе прогнозирования будущего состояния производственных мощностей. В Украине в данной сфере еще превалируют календарные подходы и управление эксплуатацией на основе учета наработки. Эти подходы были присущи промышленности развитых стран мира в 80-е годы и являются избыточными по издержкам содержания производственных мощностей.

Рассматривая деятельность корпораций в конкурентном окружении, Майкл Портер, например, выделяет следующую шестифакторную модель (см. рис. 6.1).

Диаграмма сравнительной конкурентоспособности по Майклу Портеру. Можно быть уверенным, что в усилении данных конкурентных позиций и лежит основной предмет DSS-систем. Существенным фактором их развития является то, что к настоящему времени в транзакционных системах управления оперативной деятельностью компаний накоплен огромный объем данных, значение которых в настоящее время во многом не осознано и не используется.

Крупноформатная торговля. Крупноформатная торговля и компании электронной коммерции (B2C, B2B) явились первыми институциональными заказчиками на DSS-системы. Основными задачами, решаемыми в данном секторе, являются:

  • анализ ассортимента (селективный маргинальный доход, оборачиваемость запасов, статистическое управление запасами, фондоотдача);
  • распределение площадей, раскладка;
  • анализ эффективности деятельности менеджеров и мотивация персонала;
  • планирование и анализ эффективности рекламы, акций, распродаж и т.п.;
  • управление ценообразованием.

В части управления раскладкой можно привести известный пример с корреляцией покупок пива и памперсов. Или так называемая «ловушка на кассе» — это мелкие товары, которые выкладываются непосредственно в кассовой зоне. Площадь этой зоны ограничена. Что туда положить? Опять «нет ничего практичнее хорошей теории» — нужен анализ потребительских предпочтений, который, в частности, дает многомерный статистический анализ чеков.

Рисунок 6.1 – Диаграмма сравнительной конкурентоспособности по Майклу Портеру

 

В мелкооптовой торговле ситуация проще, т.к. там потребитель идентифицирован и учтен в базе данных торговой компании, что позволяет непосредственно анализировать клиентское поведение. В розничной торговле покупатель анонимный, хотя многие компании изначально это исключают, например, METRO Cash & Carry.

Вообще основная тенденция развития прикладных информационных систем в последние пять лет — это ассимиляция систем управления взаимоотношениями с клиентами, возникших в качестве самостоятельных, в контур ERP, причем обе при этом только выигрывают.

Банки и финансовые компании. Рынок DSS-систем в финансовых институтах сейчас самый емкий. Сфера применения DSS-систем в банках касается, прежде всего:

  • банковского ритейла (платежные пластиковые карты и чеки);
  • анализа рисков;
  • предотвращения мошенничества (прежде всего с пластиковыми картами);
  • анализа потребительского поведения и проектирования новых финансовых услуг.

Последнее, прежде всего, основано на анализе и формировании потребительских групп, которые характеризуются сходным поведением. Результатом этой работы являются проекты, например, молодежных жилищных кредитов, условия овердрафтов, VIP-программы клиентского обслуживания. При этом надо отвечать на вопросы: что такое «молодежь»?, кто такой VIP-клиент? и т.д.

Предотвращение мошенничества — это перспективная зона использования методов искусственного интеллекта, которая никогда не будет исчерпана, как никогда не будет исчерпано воображение у мошенников.

В страховых компаниях DSS-системы еще не имеют такого широкого распространения, но это только подчеркивает потенциальную перспективность данного рынка.

Телекоммуникации. В телекоммуникационных компаниях, прежде всего мобильной связи, роль DSS-систем связана с проектированием новых услуг, которое основано на выявлении устойчивых клиентских групп и преимущественного клиентского поведения. Этот рынок по времени жизни можно считать неисчерпаемым.

Промышленность. В промышленности к сферам применения DSS-систем можно отнести:

  • управление взаимоотношениями с клиентами;
  • статистическое управление запасами;
  • финансовое и бюджетное планирование и управление;
  • анализ и управление рисками.

Какие изменения в парадигме управления промышленностью произошли за последние 50 лет? До 60-х годов промышленное производство развивалось главным образом за счет развития технологии, что выражалось тезисом: «производить и продавать». В тот период, безусловно, предложение явно формировало спрос. При этом основные производственные фонды были преимущественно материальными: здания, сооружения, оборудование, за которым стояли патентованные технологии.

К концу 20-го века признанным тезисом, выражающим рациональное рыночное поведение, стала парадигма «воспринимать и реагировать». Темп появления новых революционных технологий замедлился, технологии в основном находятся на этапе эволюции. А фронт конкурентной борьбы переместился в область проектирования новых продуктов и услуг. При этом превалирующим стали намерения и пожелания клиентов: явно или неявно выраженные. В качестве примеров можно привести практически полный переход на заказное конфигурирование автомобильной промышленности, постоянно возрастающий спектр предложений услуг в сфере телекоммуникаций при том же самом оборудовании и т.д.

Все большее и большее значение приобретает информация и методы работы с ней. Это тем более актуально в развитых странах мира на фоне сохраняющейся тенденции переноса непосредственно материального производства в развивающиеся страны с низкой стоимостью рабочей силы, энергетических и сырьевых ресурсов. Концепция DSS-систем прямо соответствует задаче информационного обеспечения данной парадигмы.

Каковы сегодня основные промышленные тенденции? Это:

  • глобализация;
  • укрупнение;
  • специализация (для средних компаний);
  • интеграция в поставочные сети;
  • фокусировка на разработке новых продуктов и услуг;
  • необходимость одновременно конкурировать как по качеству, так и по цене.

Промышленность сегодня фокусируется на:

  • разработке новых продуктов;
  • коммерциализации;
  • использовании преимуществ консолидации и интеграции в поставочные сети;
  • управлении людскими ресурсами.

Анализируя причины отставания США в промышленном развитии, Комиссия Министерства внешней торговли США считает, что для подъема конкурентоспособности, в частности, необходимо (автор приводит только те пункты рекомендаций, которые имеют отношение к предмету рассмотрения, сам исходный перечень немного шире):

  • уделять больше внимания стратегическому планированию и больше инвестировать в исследования и разработки;
  • изучать стратегию иностранных конкурентов и совершенствовать собственную;
  • уделять больше внимания производственной функции и больше инвестировать в оборудование и кадры;
  • устранить коммуникативные барьеры в пределах организации;
  • признать ценность развития информационных связей с поставщиками и потребителями.

Информационная поддержка реализации вышеперечисленных рекомендаций со стороны DSS-систем может выглядеть следующим образом:

  • «уделять … внимание стратегическому планированию…» — анализировать исторические данные по структуре себестоимости, динамике цен;
  • «изучать стратегию иностранных конкурентов» — анализировать динамику рынков;
  • «уделять больше внимания производственной функции» — анализировать затраты по управлению активами, динамику тарифов, эффективность использования оборудования и фондоотдачу;
  • «устранить коммуникативные барьеры» — анализировать исторические данные по параметрам реализации внутренних бизнес-процессов и эффективность результатов;
  • «признать ценность развития информационных связей» — анализировать исторические данные взаимоотношений с клиентами и поставщиками.

Эффективное решение данных задач требует углубленного анализа как рыночного окружения, так и динамики использования всех внутренних ресурсов.

Особое значение в конкурентной борьбе при практически равной ситуации по возможности доступа к технологиям приобретает персонал и подходы к управлению. В развитых странах мира персонал, по крайней мере, ведущий в стратегическом планировании, переместился из категории «Затраты» (Cost) в категорию «Фонды» — первые надо неуклонно сокращать, а вторые надо развивать и инвестировать.

Также следует отметить, что в настоящее время в мире действует общая глобальная тенденция преимущественного развития рынка услуг по сравнению со сферой непосредственно производства. Экономика все более и более становится информационной, а не материальной.

Рассматривая корпоративный рынок, очень показательным является анализ того, что могут и чего не могут наследуемые системы, прежде всего типов ERP и Project Management.

Оборона. В оборонной области аналитические системы класса DSS развиваются в решении задач:

  • планирования и управления операциями;
  • планирования и управления эксплуатацией.

Так, по результатам первой войны в Ираке экономический эффект от использования систем искусственного интеллекта был оценен в сумму порядка 100 млн. долларов. Это привело приблизительно к трехкратному увеличению ассигнований на развитие данных информационных технологий в интересах Министерства обороны США. Сегодня в данной области ассигнования уже оцениваются суммами в миллиарды долларов.

Государство. В области государственного строительства роль DSS-систем пока невелика. Потенциально их область использования связана с оценкой эффективности государственных и муниципальных программ. Это связано, прежде всего, с тем, что государственные и муниципальные программы не сводятся к экономическому эффекту как таковому. Развитие информационных систем в данной сфере в большой мере зависят от философского осмысления роли и места государства в будущем мире, т.е. основополагающую роль в данном процессе имеет выработка критериев и подходов к их оценке.

Предложения. Обобщенный портрет DSS-систем можно составить на основе краткого анализа предложений компаний Cognos, SAS, Hyperion, Oracle. Так как данная статья носит вводный характер, автор не ставил перед собой целью сравнительный анализ продуктов — это тема других работ.

Прежде всего, следует обратить внимание на то, что перечень ключевых игроков на рынке DSS-систем не совпадает с лидирующим списком производителей систем ERP. Присутствие компании Oracle в приведенном списке отражает явно выраженное намерение компании Oracle развивать данное направление, наличие действительно развитого инструментального набора для выполнения подобных проектов, последние приобретения компании в данной области. С этой точки зрения в анализируемый список можно было бы добавить и IBM с Microsoft, но эти производители все-таки больше относятся к инструментальной области и платформам, чем к прикладной.

В основной функциональный набор DSS-систем входят:

  • финансовое планирование и бюджетирование;
  • формирование консолидированной отчетности (до 200 преднастроенных отчетов);
  • создание информационной системы стратегического управления на основе ключевых показателей деятельности (Balance Scorecards) с преднастроенными библиотеками показателей (до 500);
  • анализ взаимоотношений с клиентами и поставщиками;
  • анализ рыночных тенденций;
  • функционально-стоимостный анализ (ABC-Costing);
  • функционально-стоимостное управление (Activity Based Management, ABM);
  • система постоянных улучшений (Kiezen Costing);
  • многомерный анализ данных (OLAP);
  • выявление скрытых закономерностей (Data Mining);
  • выявление моделей (структур) данных;
  • статистический анализ и прогнозирование временных рядов;
  • событийное управление бизнесом (Event-driven BI);
  • анализ рисков;
  • формирование преднастроенных запросов (до 500-600);
  • интеллектуальный поиск (по неполным данным и неформальным запросам);
  • бизнес-моделирование и анализ эффективности выполнения бизнес-процессов;
  • референтные отраслевые модели.

Количество преднастроенных областей анализа достигает 30-40.

Событийное управление бизнесом связано с обнаружением преднастроенных событий вида:

  • уведомления об определенном состоянии;
  • исполнение;
  • операционные события.

Информационной платформой являются хранилища данных (Data Warehouse).

Инструментальная среда — интеграционные системы, основанные на открытых стандартах. Эти системы соответствуют требованиям:

  • информационной безопасности;
  • масштабируемости;
  • открытости;
  • многомерного и многовариантного представления данных;
  • интеллектуального интерфейса;
  • интегрируемости с основными платформами и бизнес-приложениями, интеграция данных из разнообразных источников, сетевая интеграция (прежде всего web);
  • обеспечивают сервис по «очистке» данных при их загрузке в хранилища.

Техническое обеспечение связано с:

  • обработкой данных;
  • надежным хранением данных и обеспечением целостности;
  • архивацией и восстановлением данных;
  • сетевым и телекоммуникационным обеспечением;
  • криптографическим обеспечением;
  • управлением доступом пользователей;
  • загрузкой данных, в том числе с использованием средств интеллектуального интерфейса (распознавание образов: текста, речи, изображений).

Отличительной особенностью рассматриваемых продуктов является значительная большая, чем в случае с ERP-системами, готовность к немедленной работе (значительно меньшие циклы внедрения при наличии наследуемых баз данных).

Целевые результаты. Результаты выполнения проектов целевым образом соответствуют предоставлению возможности получения ответов на вопросы:

  • здоров ли бизнес?
  • кто мой лучший клиент?
  • какой мой лучший продукт или услуга?
  • какого поставщика мне выгодно выбрать и почему?
  • где мы типично не укладываемся в сроки и почему?
  • какова эффективность деятельности нашего персонала?
  • какая дочерняя компания внесла наибольший (наименьший) вклад в результат?
  • что показывает анализ фондоотдачи оборудования?
  • какой сценарий и подход выбрать при слиянии (реструктуризации) компаний?

 

Контрольные вопросы

 

1. Что представляют собой современные системы поддержки принятия решения (СППР)?

2. Какие технологии можно использовать при создании СППР?

3. Дайте определение DSS-систем. Каковы сферы применения DSS-систем?

4. Инструментальные средства бизнес-интеллекта и их типы.

5. ERP-системы и тенденции их развития.

6. Диаграмма сравнительной конкурентоспособности по Майклу Портеру.

 

Рекомендуемая литература

 

1. Данилевский Ю. Г. Информационная технология в промышленности / Ю. Г. Данилевський, И. А. Петухов, B. C. Шибанов. - Л.: Машиностроение, 1988. – 452 с.

2. Устинова Г. М. Информационные системы менеджмента / Г. М. Устинова. – СПб: Изд-во «ДиаСофт ЮП», 2000. – 368 с.

3. Громов Г. Р. Очерки информационной технологии / Г. Р. Громов. - М.: ИнфоАрт, 1992. – 452 с.

4. Информационные системы в экономике / Под ред. В. В. Дика. - М.: Финансы и статистика, 1996. – 358 с.

5. Иванов П. Управление информационными системами: базовые концепции и тенденции развития / П. Иванов // Открытые системы. - №4. – 1999. - С.37-43.

6. Глущенко И. И. Стратегическое управление инновационной деятельностью / И. И. Глущенко. – М.: ТОО НЦП «Крылья», 2006. – 356 с.

 

<== предыдущая лекция | следующая лекция ==>
Системы поддержки принятия решения как составная часть ИС. Компоненты системы поддержки принятия решения | Аналитические методы в средствах разведки данных (Data Mining)
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 321; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.