Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Равновесие несмешивающихся жидкостей




Давление Жидкости на горизонтальное дно сосуда

Плоская поверхность

 

Этот случай можно рассматривать как частный предыдущего, но можно получить и более удобное соотношение. Действительно, общее выражение для силы давления имеет вид (2.15), но так как поверхность плоская, то ориентация нормали для всех ее точек остается одинаковой, и, следовательно,

 

(2.23)

 

Сила с которой жидкость действует на плоскую стенку, равна весу жидкости в объеме цилиндра с основанием, равным площади данной стенки, и высотой, равной глубине погружения центра тяжести этой площадки под уровень свободной поверхности.

Следует отметить, что задачи, связанные с определением сил давления на поверхности, играют исключительно важную роль в гидротехнической практике. Применительно к энергетике и машиностроению круг этих задач заметно сужается и ограничивается, главным образом, расчетом болтовых соединений люков различных резервуаров, находящихся под давлением.

 

Согласно формуле (2.23) сила давления жидкости на горизонтальное дно сосуда равна весу жидкости в объеме цилиндра с основанием равным площади дна, и высотой, равной глубине этого сосуда.

 

На рисунке представлены 3 различных сосуда по форме, однако, с равными площадями дна.

 

 

 

Поэтому, несмотря на разную. Форму сосудов, давление жидкости на дно будет одинаковым во всех трех случаях.


 

 

Поверхность уровня – это поверхность все точки которой имеют одинаковое значение рассматриваемой функции (температура, потенциал)

 

Поверхность равного давления будем называть поверхностью уровня.

 

Свойства поверхности:

1. Две поверхности уровня не пресекаются. Т.к p1<>p2

2. Внешние объемные силы направлены нормально к поверхности уровня.

3. Поверхность уровня есть горизонтальная поверхность.

Предположим, что две несмешивающиеся между собой жид­кости с различной плотностью помещены в одном и том же ре­зервуаре и находятся в равновесии. В таком случае и поверхностьих раздела будет также неподвижна. Определим вид такой по­верхности. Свободная поверхность является поверхностью уров­ня (во всех ее точках давление равно р0),т. е. представляет собой горизонтальную плоскость.

 

 

Рассмотрим условия равновесия на неподвижной поверхно­сти раздела жидкостей с плотностями ρ1 и ρ2. Предположим, что поверхность раздела занимает положение, как показано на рис. 1.11.

Напишем основное дифференциальное уравнение для жид­кости: с плотностью

 

 

и с плотностью

 

 

 

Возьмем на поверхности раздела две точки (точки МиМ1на рис. 1.11). При переходе от одной точки к другой давление рменяется на величину dp и поэтому в указанных выше равенст­вах dp будет одним и тем же по величине.

 

Тогда:

 

 

или

 

 

 

Так как g≠0 то, если p1 ≠ p2, то dz=0 и, следовательно, для поверхности раздела справедливо z=const, т. е. поверх­ность раздела в этом случае может быть только горизонтальной, Тот же результат был бы получен и при рассмотрении условий равновесия на поверхностях раздела других жидко­стей, находящихся в резервуаре.

Итак, приходим к общему заключе­нию, что при равновесии несмешивающихся жидкостей поверхности их разде­ла будут горизонтальными плоскостями.

Жидкости при этом расположатся по высоте (считая сверху вниз) в порядке воз­растания их плотностей, что следует не­посредственно из общих условий устой­чивого равновесия механической систе­мы в поле тяготения: центр тяжести системы расположенные в наиболее низкой точке, или, иначе, потенциальная энергия системы должна быть минимальной.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1410; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.