Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Точка пересечения прямой и плоскости


Если задано общее уравнение прямой

(37.3)

то для того, чтобы найти точку пересечения прямой с плоскостью

: Ax+By+Cz+D=0 (36.4)

надо уравнение плоскости приписать к системе уравнений (37.3) задающих прямую линию , и решить полученную систему из трёх линейных уравнений с тремя неизвестными. Решение этой системы и будет координатами точки пересечения прямой и плоскости .

Если прямая задана каноническим уравнением (40.2),

то для нахождения точки пересечения этой прямой с плоскостью , заданной уравнением (36.4), уравнение (40.2) целесообразно перевести в параметрическое уравнение той же прямой (см. §40).

(40.4)

Далее в линейное уравнение (36.4) вместо x, y ,z подставляем их выражения через параметр t по формуле (40.4). Получим некоторое линейное уравнение относительно t. Решим данное уравнение (относительно t), и найденное t подставим в формулу (40.4)Полученные после подстановки в (40.4) величины x, y, z и будут координатами точки пересечения прямой , заданной уравнением (40.2) или (40.4) и плоскостью (36.4)

В качестве примера рассмотрим задачу о том, как из точек на плоскость , заданную уравнением 36.4, опустить перпендикуляр (т.е. как найти проекцию точки на плоскость ), а также докажем формулу (39.1) расстояния от точки до плоскости.

<== предыдущая лекция | следующая лекция ==>
Угол между прямой и плоскостью. Условие их перпендикулярности | Доказательство формулы (39.1)

Дата добавления: 2014-01-04; Просмотров: 754; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.