КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Анализ данных в АИС на предприятии
Автоматизация анализа массивов данных – одно из основных назначений АИС. Системы и модули больших КИС предназначенные для автоматизации анализа данных называют СППР (DSS). Основное предназначение анализа данных на предприятии – поддержка принятия управленческих решений. Любая система анализа данных должна обеспечивать: ввод данных, хранение данных, анализ данных. Средствами ввода данных являются интерфейсные средства, в частности, клиентских компонентов OLTP-систем. Для хранения данных в системах анализа используются базы данных и хранилища данных (ХД, ИХ – инф. хранилища, Data Warehouse). Концепция ХД возникла в начале 90-х гг. Появление этой концепции связано с выявленными противоречиями к системам оперативной обработки данных и к системам анализа. Противоречия: 1. Сложные аналитические запросы забирают ресурсы системы и могут существенно тормозить обработку оперативных данных. 2. Оперативные базы не приспособлены к длительному хранению больших массивов данных, которые необходимы для анализа. 3. Избыточность данных в оперативных базах должна сводиться к минимуму. Для анализа некоторая избыточность может быть полезной. 4. Ошибки при ручном вводе данных в оперативные базы неизбежны и в принципе могут допускаться. В то же время ошибки в данных, предназначенных для анализа, могут полностью исказить его результаты. 5. Аналитические запросы в отличие от обычных запросов OLTP-систем не могут быть определены заранее. Для систем оперативной обработки типична средняя постоянная загрузка вычислительной системы. При анаизе данных наблюдается пиковая загрузка при обработке запросов. Основная идея ХД – принцип разделения оперативных данных и данных для анализа.
Определение ХД (У. Инмон 1993 г.). ХД – предметно ориентированный, интегрированный, неизменяемый, поддерживающий хронологию набор данных, предназначенный для поддержки принятия управленческих решений. Предметная ориентированность означает, что некоторую предметную область отражают данные, поступающие в ХД из оперативных источников, отражающих отдельные аспекты этой области. Кроме того, для анализа необходимо хранить только содержательные данные. Интегрированность означает, что данные в ХД поступают из различные внутренних и внешних источников: оперативные базы предприятия, сеть Интернет, электронные СМИ, электронные каталоги, справочники, архивы, статистические отчеты. Данные перед помещением в ХД приводятся к единым форматом – интегрируются. Неизменяемость – что данные не должны подвергаться изменениям за исключением случаев выявления ошибок. Хронология – все элементы данных должны иметь временные метки, соответствующие моменту времени появления данных. Хранилища могут быть централизованными, в этом случае используют единое хранилище на одном компе, или в одном узле сети. Либо хранилище может быть распределенным, в этом случае функции ХД реализуются на нескольких узлах сети. Хранилища могут быть физическими, в этом случае данные фактически перегружаются из оперативных баз в специальное хранилище, к которому адресуются аналитические запросы. Также хранилища могут быть виртуальными, в этом случае запросы обрабатываются оперативными источниками данных (OLTP). Виртуальное ХД проще в создании и менее затратно, но эффективность анализа невысока. Физическое ХД сложнее и дороже, но его использование более эффективно. Безопасность данных в ХД можно повысить, используя принцип витрин данных (Data Mart), т.е. упрощенных хранилищ, предоставляющих данные определенным категориям пользователей в соответствии с имеющейся у них необходимостью. В целом систему для анализа данных можно представить:
По степени сложности и интеллектуальности задачи анализа данных можно разделить: 1. Информационно-поисковые задачи. Их решение сводится к поиску и выборке необходимых данных. Для решения таких задач достаточно средств в стандартном СУБД. Например, информационно-поисковая задача – предоставить данные об определенном потребителе продукции. 2. Задачи оперативного анализа. Выполняется группировка и обобщение первичных данных, вычисляются агрегированные показатели и строятся соответствующие зависимости. Такие задачи решаются с помощью технологии OLAP (On-line Analytical Processing). Пример: предоставить информацию о предприятиях-покупателях, задерживающих оплаты отгруженной им продукции на текущий момент. 3. Задачи интеллектуального анализа. Их решение сводится к выявлению закономерностей (шаблонов) в массивах данных. Используется Data Mining (добыча данных, интеллектуальный анализ данных). Пример: Построить информационный портрет типичного предприятия, задерживающего оплату отгруженной ему продукции.
Дата добавления: 2014-01-03; Просмотров: 1197; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |