Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Подбор коэффициентов в окислительно-восстановительных реакциях

И их соединений

Окислительно-восстановительные свойства элементов

 

Окислительно-восстановительные свойства элементов и их соединений связаны с положением элементов в Периодической системе элементов Д.И. Менделеева. Простые вещества – неметаллы обладают большими окислительными свойствами, а металлы – большими восстановительными свойствами.

Наиболее энергетически устойчива восьмиэлектронная конфигурация (правило октета), и атомы в окислительно-восстановительных реакциях (ОВР) стремятся приобрести эту конфигурацию. Элементы, у которых число электронов на внешнем слое от 1 до 3 - отдают их, а от 5 до 7 – присоединяют электроны, дополняя свой внешний слой до октета.

Превращение атомов в положительно заряженные ионы определяется величиной энергии ионизации наружных электронов.

Энергия ионизации электрона первого снаружи слоя является периодической функцией зарядов атомов ядер.

Чем меньше энергия ионизации элемента, тем ярче выражены его восстановительные свойства. Это наблюдается у элементов, в атомах которых внешний энергетический уровень содержит только s-электроны и одни p-электроны. Например,: K, Na, Mg, Ca.

По мере увеличения числа электронов в p–подуровне наружного энергетического уровня, энергия ионизации резко возрастает.

Превращение атомов в отрицательно заряженные ионы определяется величиной сродства к электрону. Чем больше сродство, тем ярче выражены окислительные свойства элемента.

Сродство к электрону является периодической функцией зарядов атомных ядер. У первых элементов каждого периода сродство к электрону очень мало. Значительной величины оно достигло у кислорода и элементов главной подгруппы VII группы, у них на p–подуровне содержится от 4 до 5 электронов.

Поэтому в каждом периоде по мере повышения порядкового номера элемента восстановительные свойства простых веществ понижаются, а окислительные свойства повышаются.

В каждой главной подгруппе с повышением порядкового номера увеличиваются восстановительные свойства простых веществ и уменьшаются окислительные.

 

Например, VI группа, главная подгруппа.

Кислород «О» проявляет только окислительные свойства, фосфор – в основном, восстановительные.

Элементы побочных подгрупп, атомы которых на внешнем энергетическом уровне содержат только s-электроны, проявляют только восстановительные свойства.

 

Существуют несколько методов составления уравнений реакций. Рассмотрим два из них: метод электронного баланса и ионно-электронный.

Метод электронного баланса предполагает, что число электронов, отданных всеми атомами восстановителя, должно быть равно числу электронов, которые приняли все атомы окислителя (с учётом коэффициентов перед молекулами веществ в уравнении реакции).

 

Уравнивание методом электронного баланса предполагает следующие шаги:

KMnO4 + HBr à Br2 + KBr + MnBr2 + H2O

1. Записываем степени окисления всех элементов:

K+ Mn7+ O2- 4 + H+ Br - à Br20 + K+ Br - + Mn2+ Br - 2 + H+ 2O2-.

2. Выписываем пары элементов, которые изменили степень окисления:

Mn7+…à Mn2+;

Br -…à Br20.

3. Составляем уравнение электронного баланса:

Mn7+ + 5e à Mn2+ ∙ 2

2Br - – 2e à Br20 ∙ 5

 

4. Складываем ионные уравнения для того, чтобы показать – число отданных восстановителем электронов действительно равно числу электронов, принятых окислителем:

2Mn7+ + 10e +10Br - -10e à 2Mn2+ + 5Br2 .

5. Указываем окислитель и восстановитель, процессы окисления и восстановления:

Mn7+ (в составе KMnO4) – окислитель, процесс восстановления;

Br - (в составе KBr) – восстановитель, процесс окисления.

6. Составляем молекулярное уравнение и уравниваем его:

2KMnO4 + 16HBr à 5Br2 + 2KBr + 2MnBr2 + 8H2O.

Метод электронного баланса используют для подбора коэффициентов в уравнениях реакций между веществами, не находящимися в водном растворе, а также между веществами в водном растворе, если эти вещества и продукты реакции – неэлектролиты:

Fe2O3 + 3CO = 2Fe + 3CO2,

FeIII + 3 e - = Fe0 2

CII - 2 e - = CIV 3.

Для веществ, в которых одновременно окисляются (или восстанавливаются) атомы двух элементов, и для молекулярных простых веществ расчет ведут на одну формульную единицу (молекулу) вещества:

} -11 e- 4
4Fe(S2) + 11O2 = 2 Fe2O3 + 8SO2 ,

FeII - 1 e - = FeIII

}
2S - I - 10 e - = 2SIV

O20 + 4 e - = 2O - II +4 e - 11.

 

Электронно-ионный метод составления уравнений основан на составлении частных уравнений восстановления ионов /молекулы/ окислителя и окисления иона /молекулы/ восстановителя с последующим суммированием в общее уравнение. Для этого сначала составляют ионную схему реакции, записывая сильные электролиты в виде ионов, а неэлектролиты, слабые электролиты и газы и осадки – в виде молекул. Не изменяющиеся в результате ионы в ионную схему не включаются.

Метод электронно-ионного баланса используют для подбора коэффициентов в уравнениях окислительно-восстановительных реакций, протекающих в водном растворе при участии ионов сильных электролитов. Он складывается из следующих этапов:

а) записывают молекулярное уравнение реакции

 

K2Cr2O7 + H2SO4 + H2S = Cr2(SO4)3 + H2O + S¯ + K2SO4;

 

б) записывают (на следующей строчке) формулы реагентов в ионном виде, указывая только те ионы (для сильных электролитов) или формульные единицы (для слабых электролитов, твердых веществ и газов), которые принимают участие в реакции в качестве окислителя, восстановителя и среды:

 

Cr2O72 - + H+ + H2S =

(здесь Cr2O72 - - окислитель, H+ - кислотная среда, H2S – восстановитель);

в) составляют (на двух следующих строчках, правила составления см. ниже) электронно-ионные уравнения полуреакций восстановления и окисления, подбирают дополнительные множители:

 
 


полуреакция восстановления Cr2O72 - + 14H+ + 6 e- = 2Cr3+ + 7H2O 1;

полуреакция окисления H2S - 2 e- = S¯ +2H+ 3;

 

г) составляют, суммируя уравнения полуреакций, ионное уравнение реакции, т.е. дополняют запись (б):

 

Cr2O72 - + 8H+ + 3H2S = 2Cr3+ + 7H2O + 3S¯;

 

д) переносят коэффициенты в молекулярное уравнение реакции и подбирают коэффициенты для веществ, отсутствующих в ионном уравнении, т.е. дополняют запись (а), и проводят проверку (обычно по числу атомов кислорода). Получают уравнение химической реакции с подобранными коэффициентами:

 

K2Cr2O7 + 4H2SO4 + 3H2S = Cr2(SO4)3 + 7H2O + 3S¯ + K2SO4.

 

Часто ион-окислитель и продукт его восстановления отличаются по содержанию кислорода (сравните Cr2O72 - и Cr3+). Поэтому при составлении уравнений полуреакций в них включают пары: H+/H2O – для кислотной среды и OH - /H2O – для щелочной среды. Оксид-ионы, потерянные окислителем, не могут существовать в свободном виде в растворе; они (ниже показаны в квадратных скобках) соединяются в кислотной среде с катионами H+, а в щелочной среде – с молекулами H2O:

 

кислотная среда [O2 - ] + 2H+ = H2O;

щелочная среда [O2 - ] + H2O = 2OH -.

 

Аналогично, недостаток оксид-ионов в формульной единице восстановителя по сравнению с продуктом его окисления (например, SO32 - и SO42 - ) компенсируется добавлением молекул воды (в кислотной среде) и гидроксид-ионов (в щелочной среде):

 

кислотная среда H2O = [O2 - ] + 2H+;

щелочная среда 2OH - = [O2 - ] + H2O.

<== предыдущая лекция | следующая лекция ==>
Определение степени окисления элементов в соединениях | Направление протекания окислительно-восстановительных процессов
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 2839; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.