КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Учебный вопрос № 1. Назначение и состав ректификационных колонн
Практическое занятие № 4. РЕКТИФИКАЦИОННЫЕ КОЛОННЫ В ректификационных колоннах воздухоразделительных установок воздух или ранее выделенные из него смеси разделяются на целевые продукты (кислород, азот, аргон и др.) или концевые и промежуточные фракции (обогащенная кислородом кубовая жидкость, аргонная фракция и др.). Концевые и промежуточные фракции, не являющиеся целевыми продуктами, поступают в последующие по технологической линии колонны или выводятся из установки в качестве побочных продуктов. В состав установок разделения воздуха может входить от одной до пяти-шести ректификационных колонн, назначение, условия работы и габариты которых различны. Основные (верхняя и нижняя) колонны имеют большие размеры и работают при наиболее низкой в установке температуре. Их конструкция существенно сказывается на габаритных размерах блока разделения, потерях холода в окружающую среду через изоляцию и на удельном расходе энергии, а также на удельных металлозатратах на единицу продукта (или перерабатываемого в установке воздуха). Гидравлическое сопротивление верхней колонны влияет на удельный расход энергии в установках низкого давления. При форсировании установок пропускная способность и эффективность действия ректификационных колонн зачастую лимитирует производительность всего блока. Поэтому к выбору расчетных параметров и к эксплуатационным характеристикам колонн предъявляются высокие требования. В термодинамическом и технологическом расчетах установок рассматривают статику процесса ректификации и выявляют балансовые соотношения потоков и необходимые характеристики разделительного действия (например, число теоретических тарелок) соответствующих колонн. Выбор типа, конструирование и расчет колонн, обеспечивающих заданные производительность и разделение при оптимальных размерах и гидравлических сопротивлениях этих аппаратов, является самостоятельной задачей, для разрешения которой необходим учет кинетики процесса ректификации и гидравлики работы колонн. В процессе ректификации могут быть применены различные по типу конструкции и по определяющим размерам колонны. Конструкцию и основные размеры колонн выбирают в результате сопоставительных расчетов в зависимости от требований (например, ограничение диаметра из условий транспортирования с завода-изготовителя на место монтажа, ограничение высоты для колонн транспортных установок, ограничение сопротивлений и т. п.). Расчет основных размеров колонн базируется на положениях теории массообмена и гидравлики. Смеси разделяются в ректификационной колонне в результате контакта и взаимодействия потоков стекающей по колонне жидкости и поднимающегося из испарителя пара, состоящих из одинаковых компонентов. Ректификация является массообменным (диффузионным) процессом. Противоточное движение фаз в ректификационной колонне вызывает нарушение равновесия между жидкостью и паром, встречающимся в каждом сечении по высоте колонны. При контакте неравновесных по составу фаз происходит перераспределение компонентов смеси между фазами. Равновесие характеризуется равенством химических потенциалов распределяемого компонента в обеих сосуществующих фазах. Поэтому естественное, распределение каждого компонента системы направлено к выравниванию его химических потенциалов в обеих контактирующих фазах. Разность химических потенциалов является движущей силой процесса, диффузионный поток данного компонента через поверхность контакта направляется в сторону фазы с меньшим значением его химического потенциала. В результате в каждом рабочем сечении колонны происходит процесс контрдиффузии легколетучих компонентов из жидкости в пар, а тяжелолетучих из пара в жидкость. Этот процесс сопровождается изменением температур в потоках пара и жидкости по высоте колонны.
Учебный вопрос № 2. Классификация ректификационных колонн.
Многообразные по конструкции ректификационные аппараты могут быть разделены на группы по двум основным признакам: по способу образования поверхности контакта и по схеме организации контакта и движения потоков жидкости и газа на рабочих элементах колонн. Классификация по этим признакам не является абсолютно строгой. В реальных аппаратах в результате сложной гидродинамической обстановки основному способу образования поверхности контакта всегда сопутствуют в большей или меньшей мере другие — побочные. Больше того, в одном и том же аппарате в зависимости от нагрузок по жидкости и пару может изменяться основной способ формирования поверхности контакта. Например, в насадочных колоннах возможен пленочный и эмульгационный режимы. В зависимости от интенсивности нагрузок по жидкости и газу в аппаратах данной конструкции может изменяться также и режим движения потоков. Это обстоятельство не умаляет ценности подобной систематизации, а заставляет только учитывать, что аппараты с одним и тем же типом конструкции в зависимости от режима их работы могут относиться к той или иной ее группе. По способу формирования поверхности контакта ректификационные аппараты могут быть разделены на две большие группы: в которой основной поверхностью контакта является наружная граница пленок жидкости, смачивающей твердые стенки каналов (насадки) и растекающейся по ним; поверхность контакта формируется при дроблении потока одной из контактирующих фаз в результате его проникновения через поток другой фазы. Ректификационные колонны второй группы могут быть, в свою очередь, разделены на аппараты, в которых основная поверхность контакта фаз является граничной: либо для пузырей и газовых струй, образующихся при дроблении потока пара, либо для жидкостных струй, брызг и капель, образующихся при дроблении потока жидкости. Ввиду большого разнообразия типов ректификационных аппаратов нельзя описать здесь все известные их варианты, поэтому остановимся лишь на тех из них, которые применяются для разделения воздуха. На рис. 1-3 показаны примеры типов ректификационных аппаратов, относящихся к первой группе приведенной выше классификации. Хотя в этих типах аппаратов различна не только конструктивная схема, но и силовое поле, вызывающее движение жидкости, общим для них является то, что поверхностью контакта служит свободная поверхность потока жидкости, смачивающей твердые стенки рабочих каналов. Тарельчатые колонны по способу образования поверхности контакта, как правило, относятся ко второй группе аппаратов.
На рис. 3 показана конструкция ситчатой колонны низкого давления установки СКДС-30, и на рис. 4–7 – конструкции тарелок некоторых других типов колонн. Колпачковые и провальные решетчатые тарелки в отечественном кислородном машиностроении в колоннах разделения воздуха не используются, так как их изготовление сложней, а эффективность ниже, чем у ситчатых. Колонны, показанные на рис. 4–6, представляют собой разновидности барботажных аппаратов. Основная поверхность контакта в них образуется граничной поверхностью газовых включений, проникающих через поток жидкости. В колонне, изображенной на рис. 7, поверхность контакта в основном образуется (при рабочем режиме нагрузок) за счет граничных поверхностей струй, брызг и капель, на которые поток жидкости дробится увлекающим ее газом. Жидкость от газового потока на каждой тарелке отделяется при помощи отбойника.
По схеме организации контакта и движения потоков в рабочих элементах ректификационные аппараты можно разделить на две большие группы колонн: с непрерывным (по их высоте или по длине пути каждой из фаз) контактом между жидкостью и паром (см. рис. 1, 2); 2) со ступенчатой организацией контакта, в которых фазы взаимодействуют на некоторых отделенных одна от другой ступенях—тарелках, после каждой из которых потоки пара и жидкости разделяются и поступают первый — на вышележащую, а второй — на нижележащую ступени. Если аппараты первой группы могут иметь (по принципу действия) только противоточное движение потоков жидкости и пара на всем протяжении колонны, то в аппаратах второй группы схему движения потоков можно изменять, сохраняя противоток для колонны в целом. Это приводит при одинаковом балансовом соотношении потоков (характере рабочей линии) для всей колонны к различным соотношениям контактирующих масс жидкости и пара на тарелках различной конструкции и изменяет движущую силу процесса — разность концентраций в пределах тарелки.
По схеме движения потоков в рабочих элементах тарелки можно различать колонны: 1) с противоточным движением потоков, при полном перемешивании потока жидкости по сечению и по высоте зоны контакта; такими аппаратами в первом приближении могут считаться «провальные» дырчатые или решетчатые колонны (рис. 6); 2) с перекрестным движением потоков жидкости и газа при противоположном (разнонаправленном) направлении течения жидкости на соседних тарелках (например, колонны с диаметральным потоком жидкости, показанные на рис. 4 и 5); 3) с перекрестным движением фазовых потоков при однонаправленном движении жидкости на всех тарелках колонны; среди них следует отметить, прежде всего, колонны с кольцевыми тарелками (см. рис. 3, рис. 8-16); 4) с прямоточным движением пара и жидкости в рабочих элементах тарелки (например, эжекторные, рис. 7).
Учебный вопрос № 3. Конструкция ректификационных колонн промышленных установок разделения воздуха
В зависимости от схемы разделительного аппарата (см. главу III) ректификационные колонны в нем по-разному сопрягаются с конденсаторами-испарителями и переохладителями. Только совместная работа всех этих частей разделительного аппарата обеспечивает низкотемпературную ректификацию воздуха. Но каждая из них является самостоятельным аппаратом, отличающимся от других как по назначению и характеру протекающих в нем процессов, так и по конструкции. С целью создания необходимого напора для самотека жидкости (под действием силы тяжести) отдельные части разделительного аппарата монтируют в блоке разделения смещенными по высоте. В аппарате двукратной ректификации, наиболее распространенном в воздухоразделительных установках, ректификационная колонна низкого давления р ≤ 0,167 Мн/м2 располагается над конденсатором-испарителем, а колонна высокого давления р ≤ 0,59 Мн/м2 под конденсатором-испарителем. Из верхней ректификационной колонны жидкий кислород самотеком поступает в испарительную часть конденсатора-испарителя, а сконденсировавшаяся в нем азотная флегма частично самотеком стекает на верхнюю тарелку нижней колонны, а частично собирается в кармане и направляется на орошение верхней колонны.
На их конструкции, как и на конструкции ректификационных колонн, рассматриваемых в настоящей главе, в некоторой мере сказывается способ взаимного сопряжения их в разделительном аппарате. Ректификационные колонны отечественных промышленных установок разделения воздуха представляют собой вертикальные цилиндрические аппараты с ситчатымитарелками, снабженные штуцерами для присоединения к ним соответствующих технологических коммуникаций и контрольно-предохранительных устройств. Ректификационные колонны малой и средней производительности для уменьшения потерь холода в окружающую среду и сокращения внутриблочных коммуникаций обычно непосредственно объединяют в единый аппарат с соответствующими конденсаторами-испарителями. При этом образуется комбинированный аппарат колонного типа, так как его отдельные рабочие элементы располагаются по высоте один под другим. Для краткости такие комбинированные аппараты часто также называют колоннами с соответствующими названиями. Например, «Колонна двукратной ректификации» представляет собой комбинированный аппарат, в котором две (верхняя и нижняя) колонны непосредственно присоединены с помощью пайки мягким припоем или фланцевого соединения к одному конденсатору-испарителю. Примеры конструкций колонн–комбинированных аппаратов, в каждом из которых только одна ректификационная колонна непосредственно объединена с обслуживающими ее конденсаторами-испарителями, см. на рис. 2 и 3. Эти колонны устанавливают на одной отметке и связывают с помощью трубопроводов в так называемый «Разрезной аппарат двукратной ректификации». В межтрубное пространство верхнего конденсатора колонны высокого давления (см. рис. 2) поступает не кислород, а кубовая жидкость. Образовавшиеся при ее кипении пары подаются в колонну низкого давления. При такой компоновке снижается количество флегмы в обеих колоннах разделительного аппарата, но уменьшается высота последнего. Другой пример комбинированного аппарата представляет собой показанная на рис. 8 первая криптоновая колонна установок БР-1, КТ-12 и др., в которой объединены две части ректификационной колонны и конденсатор-испаритель. В крупных воздухоразделительных установках (производительностью 5000 м3 О2 и выше) верхнюю и нижнюю колонны и конденсаторы-испарители, входящие в состав основного ректификационного аппарата, выполняют в виде отдельно стоящих аппаратов (рис. 9), связанных один с другим соответствующими трубопроводами. При производительности более 15 000 м3/ч (при н. у.) кислорода, чтобы уменьшить высоту блока разделения иногда становится экономически оправданным использование для передачи жидкости из аппарата в аппарат газлифта или специальных центробежных насосов, что позволяет установить основные ректификационные колонны на одной отметке. Конструкция ректификационных колонн зависит от давления, под которым в них протекает процесс ректификации. При низком рабочем давлении р ≤ 0,167 Мн/м2 независимо от их диаметра ректификационные тарелки-, закрепляют непосредственно в обечайках корпуса колонны (см. рис. 9). При рабочем давлении р = 0,51–0,71 Мн/м2 тарелки в корпусе крепят лишь в колоннах малого диаметра, чаще же тарелки размещают в специальной, разгруженной от действия давления, тонкостенной цилиндрической обечайке-вставке, укрепляемой в корпусе колонны, воспринимающем давление (рис. 10, 11).
Рис. 8. Первая криптоновая колонна (для агрегатов БР-1, БР-9 и др.): 1 – конденсатор; 2 – верхняя концентрационная секция ректификационной колонны; 3 – нижняя отгонная секция колонны
Способ крепления тарелок в верхних колоннах или во вставках колонны зависит от материала, из которого изготовляют обечайки. До недавнего времени обечайки верхних колонн и вставок изготовляли либо из листовой меди, либо из латуни. На рис. 12 показан способ крепления тарелок диаметром от 500 до 2200 мм в таких обечайках колонн. После установки в нижние зиги внутренней и наружной обечаек распорных латунных колец и припайки их к обечайке устанавливают и выверяют в горизонтальном положении тарелку.
После этого закладывают и припаивают прерывистым швом верхние кольца. Тарелки устанавливают последовательно, начиная с нижней тарелки нижней царги корпуса (или вставки). В колоннах диаметром менее 500 мм, в которых каждая тарелка снабжена вытеснительным колпаком и внутренняя обечайка отсутствует, кольца для крепления тарелок в наружной обечайке изготовляли из латунной проволоки диаметром 5 мм, а теперь делают из трубок. Для колонн диаметром 2200 мм кольца для крепления тарелок делают полыми (рис. 13). На рис. 13 показан также способ крепления тарелок в обечайках из аустенитовых сталей (Х18Н10Т, Х14Г14Н3Т), которые применяют заводы кислородного машиностроения для изготовления всех колонн и вставок диаметром более 1000–1400 мм. Нижнее кольцо после установки прихватывают точечной сваркой, а верхние приваривают к внутренней и наружной обечайкам прерывистым швом.
Рис. 10. Нижняя ректификационная колонна установки разделения воздуха КТ-1000М: 1 – корпус колонны; 2 – вставка с тарелками.
В эксплуатации в отечественных воздухоразделительных установках находится более 100 типоразмеров колонн. Для вновь изготовляемых раз делительных аппаратов предусмотрено всего 27 типоразмеров колонн с диаметром обечаек 200–3800 мм (для вставок до 3600 мм).
Основные размеры для ректификационных ситчатых колонн второго типа, с тарелками во вставке, работающих при давлении р=0,6 Мн/м2, приведены ниже.
Число тарелок и высоту колонн определяют в зависимости от требований к чистоте продуктов разделения и флегмового числа в соответствии с технологическим расчетом установки. Колонны этого типа могут быть трех различных модификаций. До диаметра
Рис. 12. Схема крепления ректификационных тарелок диаметром от 500 до 2200 мм: 1 – наружная обечайка; 2 – кольцо большое; 3 – кольцо малое; 4 – внутренняя обечайка; 5 - тарелка
dн = 1800 мм они обычно выполнялись открытыми фланцевыми (см. рис. 11) для непосредственного присоединения к расположенным над ними конденсаторам-испарителям. Колонны большего диаметра монтируют в блоке разделения, как самостоятельные, отдельно стоящие аппараты, связанные с другими частями разделительного аппарата с помощью трубопроводов. В этом случае применяются или второй модификации — закрытые фланцевые колонны (см. рис. 10), или чаще третьей – закрытые сварные колонны (см. рис. 12).
Ректификационные колонны третьего типа предназначены для работы при давлении р ≤ 0,167 Мн/м2. Независимо от диаметра (200–3800 мм) они выполняются с тарелками в корпусе. Ректификационные колонны этого типа выпускаются в шести различных модификациях. Первая из них, бесфланцевая колонна с односторонней впайкой или сваркой, предназначена для непосредственного присоединения к конденсатору-испарителю, над которым она располагается. Колонны этой модификации имеют dн ≤ 700 мм и применяются в качестве верхних колонн аппаратов двукратной ректификации. Те же модели колонн, выпускаемые в виде второй бесфланцевой модификации с двусторонней впайкой или сваркой, присоединяются к другим аппаратам обоими торцами корпуса. Колонны третьей фланцевой модификации выпускаются dн ≥ 1800 мм и присоединяются к расположенным под ними конденсаторам с помощью фланцев, внутренний диаметр которых равен dн. Колонны четвертой модификации могут выпускаться также в фланцевом исполнении, но для одностороннего присоединения к аппаратам меньшего размера, или с двусторонним переходом к аппаратам меньшего размера. Наконец колонны dн> 700 мм чаще всего выпускаются в виде закрытых ректификационных колонн, снабженных с обоих торцов нормальными днищами и соединяемых с другими частями разделительного аппарата трубопроводами. Верхняя часть верхних колонн аппаратов двукратной ректификации, в которой температура рабочих сред ниже температуры конденсации воздуха при давлении 0,1 Мн/мг, чтобы исключить конденсацию воздуха на поверхности колонны, может быть снабжена специальным изоляционным кожухом, заполняемым порошковой изоляцией. В зависимости от диаметра колонн и их нагрузок по пару и жидкости в них применяют различные конструкции ситчатых ректификационных тарелок. Тип конструкции и основные размеры этих тарелок для всех диаметров колонн воздухоразделительных установок, выпущенных до 1970 г., определяется отраслевой нормалью НКО-299–64–НКО-309–64.
В колоннах малого диаметра применяют либо тарелки ректификационные S-образные, либо тарелки ректификационные с колпаком, диск которых изготовляется из одного куска перфорированного листа. Приемные площадки переливного устройства закрываются накладками из листа толщиной б = 0,6÷0,8 мм. Расположение S-образных перегородок на соседних тарелках изменяется таким образом, что жидкость (поступая последовательно на тарелки то в центре, то на периферии) по тарелке двигается всегда по направлению часовой стрелки (рис. 14). Эти тарелки выпускают диаметром 219 и 289 мм при НT = 60 мм. На сливном патрубке нижней тарелки для создания гидравлического затвора устанавливается подвесная чашка. Сливной патрубок при этом может иметь увеличенную длину (~100 мм). Тарелки кольцевые с колпаком (рис. 15) изготовляют четырех размеров для колонн с внутренним диаметром от 200 до 350 мм со сплошным диском. Для колонн с большим диаметром кольцевые тарелки собирают и: отдельных секторов, число которых определяется удобством раскроя штампованной сетки и конструктивными размерами переливного устройства. При диаметрах колонн 400 и 500 мм тарелки из шести секторов имеют также вытеснительный колпак и накладку из неперфорированного листа на приемной площадке переливного устройства. При больших диаметрах колонн для направления жидкости и придания жесткости крепления тарелок используют внутреннюю обечайку или вставку(см. рис 8-14). Сектора, на которых размещается переливное устройство, изготовляют из неперфорированного (сплошного) листа. Тарелки ректификационные односливные выполняются как с профильными, так и с прямыми секторными переливными устройствами для колонн диаметрами 700, 850, 1000, 1400 и 2200 мм.
Тарелки с прямым профильным карманом (кроме колонн диаметром 700 мм) имеют, как правило, подвесную чашку и используются главным образом как нижние тарелки колонн (или их отдельных секций при наличии между ними повышенного расстояния). Конструкция ректификационных двухсливных тарелок с профильными карманами показана на рис. 16. Характеристика их основных размеров приведена ниже.
Большая часть трехсливных тарелок (для колонн диаметром 2800, 3600 и 3800 мм) выпускается также с профильными карманами. Нижние двух- и трехсливные тарелки выпускаются также с прямым карманом и с подвесными чашками для гидравлического затвора. Профильные карманы соответствуют третьему – безударному типу переливного устройства, а прямые карманы для разных типоразмеров тарелок соответствуют либо первому, либо второму типу устройств. В колоннах большого диаметра во внутренних обечайках (или вставках) размещаются распределительные бачки для ввода флегмы и кубовой жидкости на двух- или трехсливные тарелки, а также для сепарации жидкости из потока газообразного кислорода, выводимого в регенераторы и т.п. Ситчатые тарелки изготовляют из меди М3 (в основном тарелки малых размеров), или латуни Л62, а также сплавов алюминия АМцА-М и АМТУ252–57 (для установок, изготовляемых из алюминия). Секторы тарелок соединяли друг с другом с помощью пистонов, а отдельные детали с помощью пайки. В последнее время эти операции заменяются контактной сваркой, что значительно сокращает трудоемкость изготовления тарелок и приводит к значительной экономии материалов (медной трубки, припоя и т.д.). Для крепления перегородок тарелки и обечайки медных и латунных колонн применяли пайку, которая в колоннах, изготовляемых из аустенитных сталей, заменена значительно более экономичной точечной электросваркой.
Азотная флегма входит в колонну с некоторым содержанием пара после дросселирования. Отделяется пар от жидкости в больших колоннах в специальных сборниках-мерниках азотной флегмы, из которых жидкость через калиброванные отверстия поступает на тарелку. В некоторых случаях для уменьшения брызгообразования мерники азотной флегмы заполняют насадкой. Количество подаваемой в колонну флегмы контролируется по уровню жидкости (над выходным отверстием) в мернике с помощью гампсометра. В малых колоннах азотная флегма подается с помощью простейших направляющих и успокоительных устройств непосредственно на верхнюю тарелку. Для уменьшения брызгового уноса, образующегося как при барботаже, так и при вводе дросселированной жидкости на тарелку, в малых колоннах применяют простейшие сепараторы отбойного типа. В колоннах, выпускавшихся ранее, устанавливали более сложные насадочные сепараторы, малоэффективные из-за вторичного уноса задерживаемой в них жидкости. В установках малой и средней производительности флегма на верхнюю тарелку нижней колонны поступает непосредственно из конденсатора. Часть ее стекает из трубок конденсатора, другая часть специальным конусным козырьком направляется в карманы для отвода азотной флегмы в верхнюю колонну. Избыток флегмы из карманов направляется обычно через специальную прорезь на приемную площадку (глухой сектор) верхней тарелки. Вставку нижних колонн в корпусе раньше крепили с помощью фланцевого соединения (см. рис. 10–13). На промежуточный фланец корпуса нижней колонны укладывали паронитовую прокладку, которую после установки вставки затягивали с помощью шпилек и накидного фланца, располагающегося над опорным кольцом вставки. Плотность соединения внутренней вставки с корпусом проверяли, заполняя карман водой. После этого внутреннюю вставку из корпуса вынимали и транспортировали отдельно от корпуса. Корпусы колонн высокого давления, выполняемые ранее из латуни, теперь изготовляют из аустенитных сталей (Х18Н10Т). В колоннах из аустенитных сталей применяют менее трудоемкое и более надежное соединение внутренней вставки с корпусом нижней колонны сваркой (рис. 17).
При вводе в ректификационную колонну извне или выводе из нее (бокового) потока в промежуточном по высоте сечении необходимо обеспечить равномерное распределение этого потока по сечению колонны. В аппаратах малого диаметра можно, не изменяя расстояния между тарелками в месте ввода, ограничиться одним или двумя штуцерами. В колоннах среднего размера (dн ≤ 2000 мм) поток небольшой величины (до 20% от основного потока в колонне) можно ввести в межтарелочное пространство через несколько симметрично расположенных по периметру обечайки штуцеров, связанных с общим кольцевым коллектором (см. рис. 9) для ввода паров обогащенного кислородом воздуха из конденсатора криптоновой колонны. Так как высота межтарелочного пространства ограничена, то патрубок штуцера в местах присоединения к корпусу колонны деформируется до овального сечения с высотой меньше чем расстояние между тарелками. Равномерное распределение (или отбор) относительно больших потоков пара по сечению тарелки требует в колоннах среднего и большого размера увеличения расстояния между тарелками в месте ввода. В отдельных случаях можно подводить – (или отбирать) поток одновременно в межтарелочное пространство нескольких тарелок. Нижняя часть верхних колонн (не связанных непосредственно с испарителем) используется как необходимая емкость по жидкости и паровое пространство, предназначенное для распределения пара по тарелкам. В колоннах среднего и большого диаметра высокого давления (р = 0,6 Мн/м2) в нижней части – испарителе обычно барботируется поступающий на разделение воздух через кубовую жидкость
Дата добавления: 2014-01-04; Просмотров: 1636; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |