Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Корректирующие коды





Корректирующие коды строятся так, что для передачи сообщения используются не все кодовые комбинации mn, а лишь некоторая часть их (так называемые разрешенные кодовые комбинации). Тем самым создается возможность обнаружения и исправления ошибки при неправильном воспроизведении некоторого числа символов. Корректирующие свойства кодов достигаются введением в кодовые комбинации дополнительных (избыточных) символов.

Декодирование состоит в восстановлении сообщения по принимаемым кодовым символам. Устройства, осуществляющие кодирование и декодирование, называют соответственно кодером и декодером. Как правило, кодер и декодер выполняются физически в одном устройстве, называемым кодеком.

Рассмотрим основные принципы построения корректирующих кодов или помехоустойчивого кодирования.

Напомним, что расстоянием Хэмминга между двумя кодовыми n-последовательностями, biи bj, которое будем далее обозначать d(i; j), является число разрядов, в которых символы этих последовательностей не совпадают.

Говорят, что в канале произошла ошибка кратности q, если в кодовой комбинации q символов приняты ошибочно. Легко видеть, что кратность ошибки есть не что иное, как расстояние Хэмминга между переданной и принятой кодовыми комбинациями, или, иначе, вес вектора ошибки.

Рассматривая все разрешенные кодовые комбинации и определяя кодовые расстояния между каждой парой, можно найти наименьшее из них d = min d(i; j), где минимум берется по всем парам разрешенных комбинаций. Это минимальное кодовое расстояние является важным параметром кода. Очевидно, что для простого кода d=1.

Обнаруживающая способность кода характеризуется следующей теоремой. Если код имеет d>1 и используется декодирование по методу обнаружения ошибок, то все ошибки кратностью q<d обнаруживаются. Что же касается ошибок кратностью q³ d, то одни из них обнаруживаются, а другие нет.

Исправляющая способность кода при этом правиле декодирования определяется следующей теоремой. Если код имеет d>2 и используется декодирование с исправлением ошибок по наименьшему расстоянию, то все ошибки кратностью q<d/2 исправляются. Что же касается ошибок большей кратности, то одни из них исправляются, а другие нет.

Задача кодирования состоит в выборе кода, обладающего максимально достижимым d. Впрочем, такая формулировка задачи неполна. Увеличивая длину кода n и сохраняя число кодовых комбинаций М, можно получить сколь угодно большое значение d. Но такое "решение" задачи не представляет интереса, так как с увеличением n уменьшается возможная скорость передачи информации от источника.

Если длина кода n задана, то можно получить любое значение d, не превышающее n, уменьшая число комбинаций М. Поэтому задачу поиска наилучшего кода (в смысле максимального d) следует формулировать так: при заданных M и n найти код длины n, содержащий М комбинаций и имеющий наибольшее возможное d. В общем виде эта задача в теории кодирования не решена, хотя для многих значений n и М ее решения получены.



На первый взгляд помехоустойчивое кодирование реализуется весьма просто. В память кодирующего устройства (кодера) записываются разрешенные кодовые комбинации выбранного кода и правило, по которому с каждым из М сообщений источника сопоставляется одна из таких комбинаций. Данное правило известно и декодеру.

Получив от источника определенное сообщение, кодер отыскивает соответствующую ему комбинацию и посылает ее в канал. В свою очередь, декодер, приняв комбинацию, искаженную помехами, сравнивает ее со всеми М комбинациями списка и отыскивает ту из них, которая ближе остальных к принятой.

Однако даже при умеренных значениях n такой способ весьма сложный. Покажем это на примере. Пусть выбрана длина кодовой комбинации n=100, а скорость кода примем равной 0.5 (число информационных и проверочных символов равно). Тогда число разрешенных комбинаций кода будет 250»1015. Соответственно размер таблицы будет 100´ 1015=1017 бит » 1016 байт = 10000 Тбайт.

Таким образом, применение достаточно эффективных (а значит, и достаточно длинных) кодов при табличном методе кодирования и декодирования технически невозможно.

Поэтому основное направление теории помехоустойчивого кодирования заключается в поисках таких классов кодов, для которых кодирование и декодирование осуществляются не перебором таблицы, а с помощью некоторых регулярных правил, определенных алгебраической структурой кодовых комбинаций.





Дата добавления: 2014-01-04; Просмотров: 424; Нарушение авторских прав?


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2020) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.