Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Правові експертні системи




4.

4.

Співвідношення ІТ та ІС.

Основною складовою ІС є ІТ, розвиток якої тісно зв’язаний з розвитком і функціонуванням ІС.

На формування технології обробки інформації впливає тип організації. При впровадженні ІС і технологій основними критеріями є статус, розмір організації та галузь її функціонування. З врахуванням зазначених критеріїв обирається програмне-апаратне забезпечення ІТ.

Організації можна поділити на три групи: малі, середні та великі.

  1. Малі організації

ІТ, як правило, пов’язани з розв’язанням задач бух обліку, накопиченням інформації з окремих бізнес-процесів; створенням інформаційних баз даних за напрямом діяльності; організацією телекомунікаційної середи для зв’язку між користувачами.

Персонал таких організацій працює в локальних обчислювальних мережах різноманітної топології, які мають автоматизований банк даних для концентрації інформаційних ресурсів організації. Як правило, існує тільки один сервер, хоча це не завжди оптимальне рішення, тому що існують жорсткі обмеження на кількість клієнтів. Збільшення числа клієнтів приводить до уповільнення реакції системи.

  1. Середні організації.
  • функціонування електронного документообігу;
  • організація автоматизованих сховищ та архівів інформації;
  • різноманітні форми організації зберігання та використання даних;
  • розмежування доступу, розширення засобів пошуку, ієрархія зберігання;
  • Використовується кілька серверів

Локальна мережа являє собою дворівневу обчислювальну мережу, верхній рівень якої – комунікаційна середа для обміну інформації між локальними серверами, нижній рівень – підключення локальних обчислювальних мереж кожного функціонального підрозділу до локального серверу для забезпечення користувачам обміну інформацією та доступу до корпоративних ресурсів.

  1. Великі організації.

ІТ будується на базі сучасного програмно-апаратного комплексу, який включає телекомунікаційні засоби зв’язку, багатомашинні комплекси, розвинуту архітектуру «клієнт-сервер», високошвидкісних мереж. Як правило, має трьохрівневу ієрархічну структуру, яка відповідає територіальній структурі підрозділів організації: центральний сервер встановлюється у центральному офісі, локальні сервери – у підрозділах та філіях, станції клієнтів (АРМ), об’єднані у локальні обчислювальні мережі структурного підрозділу, філії, відділу – у персоналу кампанії.

Організація процесів отримання, використання, поширення та зберігання інформації, тобто інформаційної діяльності — сукуп­ності дій, спрямованих на задоволення інформаційних потреб гро­мадян, юридичних осіб і держави, — істотно залежить від вибору носіїв та способу фіксації інформації на них. Одним з основних носіїв інформації, зокрема правової, є паперовий документ. Але з бурхливим зростанням обсягів правової інформації, яке почалося в розвинених країнах з другої половини XX століття разом з ускладненням завдань соціального управління і регулювання, по­стала невідкладна потреба в широкому використанні й інших но­сіїв. Сьогодні документ це передбачена законом матеріальна форма одержання, зберігання, використання і поширення інфор­мації фіксуванням її на папері, магнітній, кіно-, відео-, фотоплів­ці або на іншому носієві. Це визначення стосується не тільки ру­кописних чи друкованих матеріалів на папері чи у вигляді книг, журналів, діаграм, карт тощо, а й матеріалів недрукованого похо­дження (машинозчитуваних записів, фільмів, звукових записів) і тривимірних об'єктів чи реалій.

У контексті інформаційних систем і технологій особливого значення набуває таке поняття, як дані — інформація, подана у формалізованому вигляді, придатному для обробки автоматизо­ваними засобами за можливої участі людини. Сучасною формою організації даних на машинних носіях є автоматизовані банки даних.

Автоматизований банк даних — це система інформаційних, математичних, програмних, мовних, організаційних і технічних засобів, необхідних для інтегрованого нагромадження, зберіган­ня, ведення, актуалізації, пошуку та видачі даних. Основними складовими автоматизованого банку даних є база даних і система управління базою даних (СУБД).

База даних — це іменована структурована сукупність взаємо­зв'язаних даних, що відбиває стан об'єктів та відношень між ни­ми в певній предметній галузі. База даних призначається для використання багатьма користувачами у процесі розв'язування кіль­кох прикладних задач і не залежить від окремих прикладних програм. База даних перебуває під управлінням СУБД — ком­плексу програмних і мовних засобів загального і спеціального призначення, необхідних для створення бази даних, підтримки її в актуальному стані, маніпулювання даними й організації досту­пу до них різних користувачів чи прикладних програм в умовах застосовуваної технології оброблення інформації.

Сучасні інформаційні технології передбачають використання систем управління базами даних (СУБД) за необхідності опрацювання великого обсягу інформації, особливо в разі виконання дій з інформацією (експорт, обробка, імпорт тощо) кількома спеціалістами. Доволі важко вибрати з великої кількості сучасних СУБД програмний про-

дукт, що забезпечить ефективне його використання у сфері діяльності підприємства, що не йде всупереч інтересам програміста, спеціаліста. Разом з тим існує багато спільних структур і об’єктів різних СУБД. Це дає можливість вивчати сучасні системи програмування баз даних на прикладі популярних СУБД зі спільними властивостями з іншими СУБД. Зокрема, такими є СУБД MS Access та MS Visual FoxPro.

Організація баз даних є необхідною передумовою для створення правових інформаційних систем і належного забезпечення право­вою інформацією суспільства, але використання таких баз може призводити до нових проблем. Скажімо, нагромадження великого обсягу правової інформації в банку даних може призвести до моно­полізації, а згодом і до зловживань у вигляді приховування інфор­мації, її незаконного оприлюднення чи використання з корисливою метою. Для запобігання таким зловживанням право власності на правову інформацію має належати державі, а використання даних регламентуватися законодавством. Іншим вкрай важливим питан­ням є забезпечення захисту інформації.

 

СИСТЕМИ ПІДТРИМКИ ПРИЙНЯТТЯ РІШЕНЬ В ЮРИДИЧНІЙ ДІЯЛЬНОСТІ

Системами підтримки прийняття рішень називають інтелекту­альні системи, за допомогою яких особи, що приймають рішення (ОПР), мають змогу аналізувати ситуації, формулювати задачі, виробляти, контролювати й оцінювати варіанти рішень, які за­безпечують досягнення поставленої мети. Згідно з таким уза­гальненим визначенням можна тлумачити СППР як одну з кате­горій управлінських інформаційних систем. Проте останні най­частіше визначаються як системи підготовки управлінських зві­тів — періодичних структурованих документів. На противагу цьому СППР має бути дієвою інтерактивною системою, що реа­гує як на заплановані, так і на непередбачувані інформаційні за­пити, зорієнтована на специфічний тип рішень або на множину взаємозв'язаних рішень і застосовується там, де неможливо або небажано мати повністю автоматичну систему.

Сфера використання таких систем практично необмежена. Вони мають не лише суто економічне застосування, а й призна­чаються для правоохоронних органів, судового виробництва, ор­ганів виконання покарань, національної безпеки, служби охорони, військової розвідки, митниці, податкової поліції, міграційної служби та багатьох інших. Правоохоронна діяльність вирізняєть­ся в цьому списку, оскільки створення СППР у цій галузі можли­ве тільки в разі взаємодії математиків, юристів, практиків та фа­хівців з інформаційних технологій, причому готові системи мають працювати в умовах розподілених організаційних струк­тур, що використовують різноманітні засоби автоматизації і не завжди забезпечені якісними каналами зв'язку.

Понад 25 років практичного використання СППР показали, що прийняття рішень можна підтримувати по-різному. Різні типи СППР надають різну допомогу ОПР — пропонуються можливості використовувати і маніпулювати великими базами даних або засто­совувати правила і контрольні перевірки чи користуватися велики­ми математичними моделями. Для позначення певних типів СППР (іноді із суто маркетинговою метою) вживають багато специфічних термінів. Основні категорії СППР розглядають залежно від того, який із головних компонентів системи взято за домінуючий. Проте зазначимо, що ІC можна віднести до класу СППР тільки за наявнос­ті в ті родової структури — підсистем керування базою даних, ке­рування базою моделей та інтерфейсу користувача.

СППР, зорієнтовані на дані, — це тип СППР, який зосере­джується передусім на доступі й маніпуляції великими базами структурованих даних. До цієї категорії відносять:

  • системи підготовки управлінських звітів;
  • сховища даних (Data Warehouse) — це особлива форма ор­ганізації бази даних, призначена для зберігання в погодженому вигляді агрегованої інформації, одержуваної з баз даних різних OLTP-систем та зовнішніх джерел. Одна з найважливіших цілей створення сховищ даних — швидка реакція на інтерактивні запи­ти. Сховища містять великі обсяги даних і мають такі характери­стики, як предметна орієнтація, інтегрованість, підтримання хро­нології, незмінність, мінімальна надмірність, захищеність;
  • системи аналізу даних (On-line Analytical Processing, OLAP) — це системи швидкого аналізу розподіленої багатовимір­ної інформації. Термін «OLAP» невіддільний від терміна «схови­ще даних». OLAP-системи забезпечують різні точки зору на дані та різні форми їх подання. Програмний продукт можна віднести до класу OLAP, якщо він має три головні особливості: багатови-мірність даних, складні обчислення, швидка обробка;
  • виконавчі інформаційні системи (Executive Information System, інформаційна система керівника) — автоматизовані сис­теми, призначені для забезпечення необхідною актуальною інформацією менеджерів вищої ланки управління у процесі прийняття стратегічних рішень. Акцент робиться на графічні дисплеї та лег­кий у використанні інтерфейс, за допомогою яких подається ін­формація з корпоративної бази даних;
  • географічні ІC (геоінформаційні системи, Geographic Information System, ПС) або просторові СППР (Spatial DSS) - СППР, що дають змогу поєднувати модельне зображення терито­рії (електронне відображення карт, схем, космо-, аерозображень земної поверхні) з інформацією табличного типу (різноманітні статистичні дані, списки, економічні показники тощо). Прикла­дом таких систем є ГІС, що використовуються в роботі органів внутрішніх справ (див. підрозд. 9.6).

 

OLAP — кілька застосувань у діяльності правоохоронних органів

Засоби аналітичної обробки допомагають знизити витрати й заощадити час на пошук інформації, істотної для розкриття та розслідування злочинів. Сфери застосування таких систем різно­манітні. Серед них можна виокремити:

А розслідування фактів шахрайства — оперативне збирання та аналіз інформації з різних джерел (повідомлення, результати попереднього розслідування, банківська і фінансова інформація), установлення неявних зв 'язків, часовий аналіз, що виявляє нестику-вання в подіях, виявлення нових слідів у справі і т. ін.;

А розвідувальний аналіз (комп'ютерна розвідка) —знімання ін­формації' з радіоефіру й телефонних ліній, нагромадження даних оперативної роботи (фіксація подій, де з'являються підозрювані, аналіз їхніх зв'язків і т. ін.); аналіз послідовності малозначущих на перший погляд подій (наприклад, регулярне перерахування невели­ких сум різними особами на один рахунок) з метою виявлення при­хованих закономірностей; а також планування цілей розвідки, фор­мування і перевірка робочих гіпотез, організація збирання, тесту­вання та інтерпретації даних із подальшим поданням результатів у вигляді діаграм, схем, таблиць, графіків;

А визначення потенційних об'єктів і суб'єктів кримінальної ак­тивності — профілактика злочинів, ідентифікація порушників за­кону, з'ясування цілей, часу та об'єктів можливого злочину, запобі­гання масовим злочинам і терористичним актам, прогнозування можливостей і напрямків промислового шпигунства, побудова кар­тини обвинувачення і врахування всіх факторів;

А непроцесуальне використання даних — аналіз публікацій у відкритому друці, формування громадської думки, підготовка кон­трактів для комерційних структур і т. ін.

Другу велику категорію становлять СППР, зорієнтовані на доступ та маніпуляцію моделями — статистичними, фінансови­ми, оптимізаційними і/або імітаційними. Здебільшого такі систе­ми використовують дані й параметри, що їх надають ОПР, але, як правило, не потребують великих обсягів даних. Приклади таких СППР:

  • засоби аналізу рішень, які допомагають ОПР розбити проб­лему на складові й структурувати її. Мета цих інструментальних засобів полягає в тому, щоб допомогти користувачеві застосувати такі моделі, як дерева рішень, моделі багатоатрибутної кориснос­ті, моделі Баєса, моделі аналізу ієрархій тощо;
  • засоби лінійного програмування — засоби використання відповідних математичних моделей для пошуку оптимального розв'язку задач розподілу ресурсів і т. ін.;
  • імітаційні засоби — засоби проведення певної кількості екс­периментів для перевірки результатів, що випливають з кількіс­ної моделі системи.

Деякі OLAP-системи, що дають змогу виконувати складний аналіз даних, можуть бути класифіковані як гібридні СППР, що забезпечують і моделювання, і пошук та підсумковий аналіз да­них. Гібридним підходом до СППР вважаються також технології здобування даних (Data Mining). Синонімами терміна «здобу­вання даних» є «виявлення знань у базах даних» та «інтелектуаль­ний аналіз даних». Мета здобування даних полягає у виявленні прихованих правил і закономірностей у наборах даних.

Засоби здобування даних та експертні системи становлять ще одну категорію СППР — рекомендаційні СППР (Suggestion DSS). Експертні системи (EC) як системи штучного інтелекту часто розглядають як окремий клас ІC, але останнім часом спостеріга­ється тенденція реалізації їхніх модулів у складі СППР і вико­навчих ІC.

СППР, зорієнтовані на документи розробляються для управ­ління неструктурованими документами і Web-сторінками (див. підрозд. 2.4). Такі СППР інтегрують різноманітні технології збе­рігання та оброблення гіпертекстових документів, зображень, звуків, відео тощо.

Групові СППР (комунікаційні СППР) — це інтерактивні авто­матизовані системи, призначені для підтримки розв'язування неструктурованих і напівструктурованих проблем кількома ОПР, що працюють як група. Групові СППР є гібридними система­ми — вони підтримують електронні, візуальні та звукові комуні­кації, складання розкладів, спільне використання даних і моделей, колективне генерування альтернатив, консолідацію ідей та інтерпретацію результатів. Крім цього, групові СППР мають мож­ливості, які вже були розглянуті стосовно інших класів СППР.

Нині більшість використовуваних СППР є внутрішньоорганізаційними — їх розроблено для індивідуального або групового використання в межах окремої організації. На відміну від них ін-терорганізаційні СППР, що належать до порівняно нової катего­рії систем, можуть мати серед своїх користувачів і зовнішніх що­до фірми осіб (акціонерів, споживачів, постачальників і т. ін.). Створити такі системи вдалося насамперед завдяки розширенню доступу до мережі Інтернет, яка забезпечує комунікаційні зв'язки різних типів, зокрема й необхідні для СППР. На базі Web-технологій створюються та використовуються системи, які діста­ли назву Web-зорієнтованих.

Усі зазначені типи СППР можна класифікувати залежно від ступеня їх спеціалізації. Функціонально зорієнтовані системи розробляються для підтримання специфічних бізнес-функцій або типів ділової діяльності. Такі системи можна назвати галузевими. Вони можуть бути зорієнтовані на маркетинг або фінанси, скла­дання розкладів або встановлення діагнозів. Зазначені СППР мож­на придбати в «коробковому» варіанті або створити в результаті пристосування загальноорієнтованих систем, які в цілому під­тримують ширші завдання, такі як управління проектами, аналіз рішень, бізнес-планування.

Очевидно, що в юридичній діяльності доводиться застосову­вати численні як загально- так і функціонально зорієнтовані сис­теми. Наприклад, аналітичні продукти англійської компанії І2 Group, що їх сьогодні Інтерпол та Європол прийняли як стандарт, використовують 1300 державних і комерційних організацій у 90 країнах світу. Технології Ї2 добре зарекомендували себе, коли йдеться про введення оперативно-слідчої інформації, аналіз да­них, візуалізацію результатів і планування заходів, спрямованих на боротьбу з організованою злочинністю, незаконним обігом наркотиків та економічними злочинами. Системи забезпечують перевірку висунутих слідчих версій, аналіз результатів слідчих дій, виявлення прихованих зв'язків, формування напрямків дій слідчого, візуалізацію фактів, які свідчать про винність або не­винність конкретної особи, контроль за розслідуванням криміналь­них справ. Серед продуктів, що їх пропонує компанія, можна на­звати такі:

  • Analyst's Notebook — програма для відображення взаємо­зв'язків між особами, подіями, банківськими рахунками, номерами телефонів, автомашин та іншими об'єктами, виявлення дина­міки послідовності подій, діаграми дій у кожній події;
  • IBase — програмне забезпечення для збирання, структури-зації та зберігання даних із різних джерел;
  • IBridge — інструментарій для вилучення та об'єднання ін­формації з усіх доступних джерел, зокрема СКБД Oracle, Microsoft Access і SQL Server, текстових файлів;
  • Analyst's Workstation — продукт, який інтегрує всі техноло­гії від І2 Group, включаючи оброблення даних за допомогою сис­теми візуальних запитів за принципом «намалюй запитання — отримай картинку-відповідь» і засоби інтеграції із зовнішніми додатками, наприклад із ГІС.

 

Експертні системи належать до класу інтелектуальних систем (систем штучного інтелекту), які виконують операції, імітуючи інтелектуальну діяльність людини — дії та розумові висновки людей у нестандартних ситуаціях, коли схема, алгоритм розв'язу­вання задачі, що постала перед фахівцем, апріорі невідомі. Інте­лектуальні системи забезпечують розв'язування неформалізованих задач користувача в деякій предметній галузі та організову­ють його взаємодію з комп'ютером у звичних поняттях, термінах, образах. Отже, можна подати таке визначення.

Експертна система — це інтелектуальна система, призначе­на для розв'язування задач у певній предметній галузі на основі знань, наданих експертами, яка містить базу знань і підтримує функції обґрунтування, пояснення та виправдання.

Застосовуються також такі терміни:

  • система на основі знань — інтелектуальна система, в якій знання про предметну галузь подано в явному вигляді та відо­кремлено від інших знань системи;
  • дорадча система — інтелектуальна система, що забезпечує формування рекомендацій про послідовність і перелік можливих дій користувача у процесі розв'язування задачі.

Основною відмінністю інтелектуальних систем від інших є те, що в них об'єктом нагромадження, зберігання, оброблення, пере­давання та використання є не дані, а знання. Знання — це сукуп­ність фактів, закономірностей, відношень та евристичних правил, що відбиває рівень обізнаності з проблемами деяких предметних галузей. Специфічні особливості знань, що дають змогу відрізнити їх від даних, такі: внутрішня інтерпретація, наявність ситуатив­них зв'язків, активність і форма подання.

Знання на відміну від даних, що відбивають кількісні характе­ристики і подаються здебільшого в цифровому вигляді, містять якісні характеристики у вигляді текстової інформації. Це також становить одну з відмінностей ЕС від систем оброблення даних. Відповідно, користувач ЕС одержує в результаті її роботи не до­кумент у табличному вигляді, а інтелектуальну пораду у формі тексту.

Специфіка функціонування ЕС та інформаційного об'єкта для оброблення зумовлює особливості архітектури такої системи. У загальному випадку вона складається з розглянутих далі вось­ми блоків.

  1. База знань — упорядкована сукупність правил, фактів, ме­ханізмів виведення та програмних засобів, що описує деяку предметну галузь та призначена для подання нагромаджених у ній знань. У базі знань мають бути присутні як загальновідомі факти, явища, закономірності, що визнані в даній предметній га­лузі й опубліковані (знання 1-го роду), так і набір емпіричних правил та інтуїтивних висновків, якими користуються спеціаліс­ти, приймаючи рішення в умовах невизначеності за наявності не­повної суперечливої інформації, і які найчастіше не опубліковані (знання 2-го роду). Очевидно, що результатом роботи розробника EC — фахівця з IT, є порожня ЕС, в якій база знань не заповнена. Заповнює базу знань експерт — знавець предметної галузі — згід­но з вибраною моделлю подання знань.

Можливість завантажувати базу знань та редагувати знання, які зібрані в базі, надає експертові блок нагромадження знань.

  1. Система керування базою знань - - сукупність програмних та апаратних засобів для організації та ведення бази знань.
  2. База цілей — компонент інтелектуальної системи, який міс­тить інформацію про поведінку інтелектуальної системи в разі досягнення цілей у межах конкретної предметної галузі.
  3. Розв'язувач задач — компонент інтелектуальної системи, призначений для формування на основі наявних знань логічних висновків, реалізація яких приводить до розв'язку задачі.
  4. Інтелектуальний інтерфейс - сукупність програмних та апаратних засобів, які забезпечують взаємодію інтелектуальної системи з користувачем на основі звичних понять, термінів, об­разів, притаманних певній сфері інтелектуальної діяльності лю­дини.
  5. Система обґрунтування - компонент інтелектуальної сис­теми, призначений для перевірки відповідності здобутого роз­в'язку знанням, що містяться в базі знань.
  6. Система пояснення — компонент інтелектуальної системи, призначений для пояснення користувачеві способу, за допомо­гою якого знайдено розв'язок, а також самого розв'язку. Наяв­ність цього блоку дає змогу використовувати ЕС не лише для прийняття рішень, а й як навчальну систему.
  7. Система довіри — компонент інтелектуальної системи, при­значений для підвищення рівня довіри користувача до здобутих результатів. Одним зі способів досягнення високої довіри може бути виправдання — функція обґрунтування деякого розв'язку із залученням наявних в інтелектуальній системі ціннісних чинників.

Використання систем штучного інтелекту в юридичній діяль­ності зумовлюється високим рівнем інтелектуальності, спеціалі­зації та професіоналізму, що притаманні розумовій діяльності юриста, судді, слідчого, криміналіста, судового експерта. Можна визначити такі напрями застосування інтелектуальних систем і технологій у галузі права:

· інтелектуалізація автоматизованих ін­формаційно-пошукових систем із законодавства;

· створення авто­матизованих систем аналізу нормативних правових текстів; по­будова консультативних систем із правотворення;

· створення експертних систем у сфері правозастосовної діяльності;

· розробка алгоритмів і програм ідентифікації за допомогою ЕОМ об'єктів при розслідуванні та розгляді судових справ (сфера криміналіс­тики й судової експертизи).

 

На російське трудове законодавство зорієнтована експертна до­відково-консультаційна система «Ущерб», призначена для юридич­ного аналізу ситуації притягнення робітників і службовців до мате­ріальної відповідальності в разі, коли підприємству завдано матеріальних збитків. Система дає змогу розглядати таке коло пи­тань: можливість притягнення особи до відповідальності за збитки, завдані підприємству або організації; встановлення виду й розміру матеріальної відповідальності з огляду на обставини конкретної си­туації; визначення орієнтовного розміру збитків і порядку їх від­шкодування. Така структура базується на формулі, згідно з якою, приступаючи до розгляду конкретної справи (ситуації) по суті, не­обхідно встановити характер правовідносин, які виникають, і виок­ремити основні критерії для їх оцінювання. Це дає змогу правильно визначити нормативні акти, до яких потрібно звернутися для правиль­ного вирішення справи, і розглянути порядок їх застосування. EC «Ущерб» містить контекстно залежний довідник із законодавства, а також посилання на використану юридичну літературу. Система призначена для використання судами, органами прокуратури при проведенні загальнонаглядових перевірок, при дослідженні діяль­ності підприємств та їхніх посадових осіб юридичними службами, керівниками і радами трудових колективів установ та організацій, професійними спілками при вирішенні спорів з адміністрацією, а також у навчальних закладах, де вивчається курс права.

Окремою сферою застосування експертних систем є прийнят­тя рішення про напрямок розслідування і виконання слідчих дій. Сутність криміналістичних досліджень зводиться до встановлен­ня закономірності у зв'язках, що існують між фактом злочину, особистістю злочинця, місцем і способом здійснення злочину, особливостями злочинної поведінки. ЕС, що застосовуються в роботі слідчого, ґрунтуються на зби­ранні, класифікації та використанні узагальненого досвіду органів ОРД.

Прикладом таких систем є «Маньяк» - підтримка прийняття рішень при розкритті серійних вбивств на сексуальному ґрунті. Вона призначена допомагати оперативникам та слідчим прокуратури у висуненні імовірної версії про тип можливого злочинця (будується психологічний профіль злочинця) ^ст\°дб0МпеВного зло-ла осіб, що підлягають перевірці на прич «'сть ^ чину. Основу системи становлять систематизовані набори найістотніших криміналістичних ознак за являється зв'язок між подією злочину І вбивцею маніяком..


[1] Гносеологія – розділ філософії, у якому вивчаються проблеми природи пізнання і його можливостей, відношення знання до реальності, досліджуються загальні передумови пізнання, виявляються умови його достовірності та істинності

[2] Онтологія – розділ філософії, що вивчає буття.

 

[4] КОРОГОДИН В. И., КОРОГОДИНА В. Л. Информация как основа жизни. – Дубна: Издательский центр «Феникс», 2000. – С.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 3408; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.