Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция №6

Рассмотрим схему:

Диаграмму для напряжений строится по второму закону Кирхгофа: . Так как неизвестны сдвиги по фазам напряжений и , то они строятся с помощью метода засечек. Строятся окружности радиусом и из конца и начала вектора соответственно. Эти окружности пересекаются в двух точках. Исходя из физического смысла, выбираем верхнюю точку. Соединив точку пересечения с началом и концом вектора , можно получить расположение векторов и . Проекция вектора на ось действительных чисел даст нам вектор активного сопротивления катушки , а на ось комплексных чисел – вектор реактивного сопротивления катушки.

Топографическая диаграмма.

Потенциал какой-нибудь одной точки, например точки , принимается за ноль, то есть . Затем определяются потенциалы точек цепи и положение их на комплексной плоскости.

;

;

;

;

;

;

Резонансный режим

работы двухполюсника.

Явление резонанса возможно в цепи, которая содержит реактивные элементы разного знака, то есть в цепи, которая содержит индуктивность и ёмкость.

Резонанс – режим, при котором то к и напряжение на входе двухполюсника совпадают по фазе, то есть разность фаз равна нулю. Это основное условие любого резонанса. По отношению к внешней цепи двухполюсник ведёт себя, как активное сопротивление.

Различают два вида резонансов: резонанс токов и резонанс напряжений.

Резонанс токов.

При параллельном соединении катушки индуктивности и конденсатора возникает резонанс токов при определённых условиях.

Определим токи:

;

;

.

Из полученного уравнения и из основного условия резонанса можно получить условие резонансов токов: . Так как , а , то условие резонансов токов приобретает следующий вид: .

Построим векторную диаграмму.

Если активные внутренние сопротивления катушки индуктивности и конденсатора не равны нулю, то , .

Если активное внутреннее сопротивление конденсатора очень мало, то условие резонанса токов примет следующий вид: .

Если активные внутренние сопротивления катушки и индуктивности и конденсатора равны нулю, то условие резонанса примет следующий вид: , откуда . При этом .

Ток, текущий через катушку индуктивности можно найти по формуле: . Если , то ток через катушку индуктивности будет равен нулю, то есть .

Реактивные проводимости: ; ; .

Задачи:

Требуется построить зависимость токов через катушку и конденсатор, в зависимости от ёмкости конденсатора .

Ток, текущий через катушку индуктивности, можно найти по следующей формуле: . Из этой формулы видно, что ток, текущий через катушку индуктивности, не зависит от ёмкости конденсатора.

Если ёмкость конденсатора равна нулю, тогда , следовательно, ток, текущий через конденсатор, равен нулю, а ток , который равен сумме токов, текущих через катушку индуктивности и конденсатор, будет равен току, текущему через катушку индуктивности .

При увеличении ёмкости конденсатора будет увеличиваться ток, текущий через него .

Компенсация сдвига фаз.

Входное сопротивление большинства потребителей электроэнергии имеют индуктивный характер. Для того, чтобы уменьшить потребляемый ток и тем самым снизить потери энергии, параллельно приёмнику подключают батарею конденсатора, то есть добиваются режима резонанса тока. Этот процесс называют компенсацией сдвига фаз. Обычно величину доводят до значений 0.9-0.95. Компенсация сдвига фаз особенно важна для энергоёмких потребителей.

Резонанс напряжений.

В цепи, в которой включены последовательно конденсатор, катушка индуктивности и конденсатор, возможно возникновение резонанса напряжений при определённых условиях. Ток, текущий в цепи можно найти по формуле: , где . Если нужно чтобы сдвиг по фазе между напряжениями равнялся нулю, то надо чтобы . Следовательно, - условие резонанса напряжений, при этом резонансную частоту можно найти по формуле: . При резонансе , а ток .

Построим векторную диаграмму по второму закону Кирхгофа:

Отношение называют добротностью.

Добротность – величина, показывающая во сколько раз напряжение на реактивном элементе при резонансе больше чем напряжение на входе, то есть .

Построим графики напряжений в зависимости от частоты.

Напряжение на катушке индуктивности можно найти по формуле: . При напряжение на катушке индуктивности будет равняться нулю, при напряжение на катушке индуктивности будет равняться ЭДС источника, то есть

Напряжение на конденсаторе можно найти по формуле: . Если , то напряжение на конденсаторе равно ЭДС источника, то есть .

Видно, что графики имеют ярко выраженныемаксимумы.

 

<== предыдущая лекция | следующая лекция ==>
Лекция №5. Конденсатор в цепи синусоидального тока | Лекция №7
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 267; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.