КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Средняя квадратическая, предельная и относительная ошибки
Классификация и свойства ошибок геодезических измерений Элементы теории ошибок измерений Восприятие органами чувств явлений окружающего мира происходит у человека неполно и неточно (расстояние и вес «на глаз»). Поэтому для уточнения и расширения представлений о мире он использует различные инструменты и приборы (определение формы и размеров Земли – космические аппараты, измерение углов – теодолит, расстояний – дальномер и т.д.). Но и такие измерения не идеальны. Поэтому истинное значение измеренных величин, за редким исключением, нам неизвестно, хотя к нему мы все время приближаемся по мере совершенствования приборов и навыков. Определением величины ошибок и их свойств занимается специальная дисциплина «Теория ошибок геодезических измерений». В практике различают 3 вида ошибок: а) грубые – получаются в результате грубых просчетов и неисправности приборов (просчет количества лент в длине линии, ошибка в отсчете десятков градусов на лимбе или числа дециметров на рейке). Они могут быть обнаружены и исключены путем повторного измерения величины. б) систематические – проявляются регулярно, обязательно в каждом измерении и обязательно одинаковы по модулю и знаку, действуют по одному принципу. Они вызваны в основном плохой юстировкой или неисправностью инструментов и приборов (20-ти метровая лента короче на 1см, коллимационная ошибка в теодолите, угол i (величина х) в нивелире и др.). Исключаются из результатов измерений введением поправок и специальной методикой измерений (углы β при КП и КЛ, при нивелировании плечи делают равными, в длины линий вводят поправки за компарирование). в) случайные – являются следствием несовершенства органов чувств человека и недостаточной точности применяемых инструментов и приборов. Они не могут быть исключены из результатов измерений, но их влияние может быть ослаблено на основе изучения их свойств. Если Х – истинное значение измеряемой величины, ℓ – измеренное значение, то случайная ошибка ∆ выражается формулой: ∆=ℓ-Х. Если одна и та же величина измерена несколько раз, то и количество ошибок будет большим. Получается ряд ошибок. Если измерения производятся приборами одинаковой точности, наблюдателями одинаковой квалификации, в одинаковых окружающих условиях, то они называются равноточными. При нарушении указанных условий измерения называются неравноточными. В основу изучения случайных ошибок положено 4 их свойства, выведенных из изучения рядов ошибок равноточных измерений. 1. При данных условиях измерений случайные ошибки не могут превосходить по абсолютной величине известного предела (свойство ограниченности). 2. Одинаковые по абсолютной величине положительные и отрицательные случайные ошибки равно возможны, одинаково часто встречаются в ряду измерений. 3. Чем больше абсолютная величина случайной ошибки, тем реже такая ошибка встречается в ряду измерений. 4. Среднее арифметическое из случайных ошибок равноточных измерений одной и той же величины имеет тенденцию стремиться к 0 при неограниченном возрастании числа измерений (свойство компенсации). Математически это записывается так ; - знак гауссовой суммы, при n→ ∞. Если соблюдены все четыре свойства в ряде ошибок, то говорят о «нормальном распределении». 5. Если ∆1 ∆n – 1-й ряд измерений ∆1' ∆n' – 2-ой ряд измерений, то 4-ое свойство распространяется и на сумму попарных произведений, то есть , при n→ ∞. Для суждения о степени точности ряда измерений нужно иметь среднее значение ошибки. Среднее арифметическое из измерений нельзя брать, так как из-за разных знаков ряд с отдельными крупными ошибками может оказаться точнее ряда с меньшими ошибками: 25,5; 24,5; 25,0 – mср.=0 Х=25м. 25,04; 24,97; 25,04 – mср.=0,02 м Если взять ошибки по абсолютной величине, то два ряда измерений с одинаковыми по абсолютной величине средними ошибками могут быть ошибочно приняты равноточными и наличие крупных ошибок не будет отражено:
Поэтому в качестве критерия для оценки точности ряда измерений используют не зависящую от знаков отдельных ошибок и рельефно показывающую наличие крупных ошибок среднюю квадратическую ошибку. Квадрат этой ошибки принимают равным среднему арифметическому из квадратов отдельных случайных ошибок, то есть: – формула Гаусса, где Δ – истинная ошибка измерения. По теории вероятностей подсчитано, что при большом количестве измерений случайная ошибка одного измерения превосходит m. ∆>1m – в 32 случаях из 100 измерений. ∆>2m – в 5 случаях из 100 измерений. ∆>3m – в 3 случаях из 1000 измерений. Поэтому утроенную среднюю квадратическую ошибку считают предельной ∆lim=3m. Часто точность произведенных измерений лучше оценивается относительной ошибкой, то есть отношением абсолютной ошибки к измеряемой величине, выражаемой правильной дробью с числителем, равным 1. Эта ошибка характеризует в основном линейные измерения и измерения площади участков. Например, в замкнутом полигоне теодолитного хода линейные измерения оцениваются относительной ошибкой; где – абсолютная ошибка, Р – периметр полигона.
Дата добавления: 2014-01-04; Просмотров: 2200; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |