Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Арифметическая середина и ее свойства


Средняя квадратическая ошибка функции измеренных величин

а) Функция общего вида:

.

Пусть аргументы измерены с ошибками ∆x1, ∆x2,…; ∆y1, ∆y2,…; ∆w1, ∆w2

Тогда

.

Так как ошибки ∆x, ∆y, ∆w малы, то функцию можно разложить в ряд Тейлора, ограничившись членами первой степени:

 

Отсюда составим систему уравнений случайных ошибок:

.

Но ∆x, ∆y…имеют бесконечное число измерений каждая и характеризуются средними квадратическими ошибками. Поэтому можно составить бесконечное число уравнений, аналогичных выше приведенному:

Возведем равенства в квадрат, сложим и разделим на n.

 

0 n→∞.

Отсюда

→ .

Квадрат средней квадратической ошибки функции общего вида равен сумме квадратов произведений частных производных по каждому аргументу на средние квадратические ошибки соответствующих аргументов.

б) Функция вида z=x+y (суммы), mz=?

Дано: х – измерено несколько раз с ошибками ∆х1; ∆х2,… ∆хn

у – измерено несколько раз с ошибками ∆у1, ∆у2,… ∆уn

z – будет вычислено несколько раз с ошибками ∆z1, ∆z2,… ∆zn.

;

.

Эта же формула справедлива для функции вида z=x-y, так как после выше приведенных рассуждений перед последним членом будет знак (-). Но он все равно стремится к нулю.

Поэтому можно сделать вывод, что квадрат средней квадратической ошибки алгебраической суммы двух аргументов равен сумме квадратов средних квадратических ошибок слагаемых.

Если mх=mу=m, то mz=± .

Пусть , перепишем . Тогда можно записать:

, но , поэтому

.

Если , то при n слагаемых , то есть квадрат средней квадратической ошибки суммы аргументов равен сумме квадратов средних квадратических ошибок слагаемых.

Средняя квадратическая ошибка алгебраической суммы измеренных с одинаковой точностью величин в раз больше средней квадратической ошибки одного слагаемого.

в) Функция вида (произведения).

k – постоянное число безошибочное.



х – измерено несколько раз с ошибками ∆х1, ∆х2,… ∆хn.

z – будет вычислено несколько раз с ошибками ∆z1, ∆z2,…, ∆zn.

 

отсюда или ,

то есть средняя квадратическая ошибка произведения постоянного числа на аргумент равна произведению постоянного числа на среднюю квадратическую ошибку аргумента (измеряемой величины).

Пусть ℓ1, ℓ2,… ℓn – ряд измерений некоторой величины Х. За наилучшее приближение к значению неизвестной величины принимают арифметическую середину ℓ0, то есть среднее арифметическое значение:

.

Арифметическая середина обладает рядом свойств, из которых можно выделить следующие:

1-е свойство: при неограниченном увеличении числа измерений n арифметическая середина ℓ0 стремится к истинному значению Х, то есть является наиболее вероятнейшим значением измеряемой величины.

+ просуммируем уравнения и разделим на n

..................

│ 0=ℓ0-Х.

↓ 0 по свойству компенсации.

Поэтому , .

2-е свойство: сумма отклонений δi измеренных значений ℓi от арифметической середины ℓ0 тождественно равна нулю.

+ Это вероятнейшие случайные ошибки.

но поэтому .

3-е свойство: средняя квадратическая ошибка М арифметической середины в раз меньше средней квадратической ошибки результата отдельного измерения m.

.

Рассматривая эту формулу как функцию общего вида, найдем:

.

Так как измерения равноточные и

то

<== предыдущая лекция | следующая лекция ==>
Средняя квадратическая, предельная и относительная ошибки | Специальная часть

Дата добавления: 2014-01-04; Просмотров: 1287; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:

  1. B-адреномиметики. Фармакологические свойства. Показания к применению. Побочные эффекты.
  2. I. Средство, обладающее свойствами антигипоксанта и ноотропа
  3. IV. Адгезионные свойства частиц.
  4. А-адреноблокаторы. Фармакологические свойства. Показания к применению. Побочные эффекты.
  5. А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами
  6. Алгоритм и его основные свойства
  7. Биологически активные неорганические соединения (строение, свойства, участие в функционировании живых систем). Физико-химия поверхностных явлений и свойства дисперсных систем
  8. Биология как наука. Сущность жизни. Свойства живого. Уровни организации живого. Клеточная теория.
  9. Булевые функции и их свойства.
  10. В какой области размеров специфические свойства дисперсных систем проявляются особенно интенсивно?
  11. Векторное поле и криволинейный интеграл (КИ). Свойства КИ.

studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.