КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Оценка адекватности модели
Этапы построения математической модели Первым этапом математического моделирования является постановка задачи, определение объекта и целей исследования, задание критериев (признаков) изучения объектов и управления ими. Неправильная или неполная постановка задачи может свести на нет результаты всех последующих этапов. [2] На рисунке 3 представлена общая схема построения математической модели. Рис. 3 Этапы построения математической модели Вторым этапом моделирования является выбор типа математической модели, что является важнейшим моментом, определяющим направление всего исследования. Обычно последовательно строится несколько моделей. Сравнение результатов их исследования с реальностью позволяет установить наилучшую из них. На этапе выбора типа математической модели при помощи анализа данных поискового эксперимента устанавливаются: линейность или нелинейность, динамичность или статичность, стационарность или нестационарность, а также степень детерминированности исследуемого объекта или процесса. Процесс выбора математической модели объекта заканчивается ее предварительным контролем, который также является первым шагом на пути к исследованию модели. При этом осуществляются следующие виды контроля (проверки): размерностей; порядков; характера зависимостей; экстремальных ситуаций; граничных условий; математической замкнутости; физического смысла; устойчивости модели. Например, контроль размерностей позволяет - приравнивать и складывать только величины одинаковой размерности, порядков величин упрощает моделирование, т.е. определяются порядки складываемых величин и явно малозначительные слагаемые отбрасываются, проверка устойчивости модели состоит в проверке того, что варьирование исходных данных в рамках имеющихся данных о реальном объекте не приведет к существенному изменению решения. Адекватность - степень соответствия модели тому реальному явлению или объекту, для описания которого она строится. Любая модель дает приближенное описание процесса функционирования объекта или системы. Поэтому необходима специальная процедура доказательства достоверности (адекватности) построенной модели. Такая оценка производиться методами математической статистики. Именно сложность доказательства адекватности предлагаемой модели принято считать важнейшим недостатком метода моделирования. Оценка адекватности разработанной модели реально существующей системе производится сравнением измерений на реальной системе и результатов экспериментов на модели и может проводиться различными способами. Наиболее распространенные из них: – по средним значениям откликов модели и системы; – по дисперсиям отклонений откликов модели от среднего значения откликов системы; – по максимальному значению относительных отклонений откликов модели от откликов системы. Названные способы оценки достаточно близки между собой, по сути, поэтому ограничимся рассмотрением первого из них. При этом способе проверяется гипотеза о близости среднего значения наблюдаемой переменной среднему значению отклика реальной системы. В результате опытов на реальной системе получают множество значений (выборку). Выполнив экспериментов на модели, также получают множество значений наблюдаемой переменной. Затем вычисляются оценки математического ожидания и дисперсии откликов модели и системы, после чего выдвигается гипотеза о близости средних значений величин и (в статистическом смысле). Основой для проверки гипотезы является -статистика (распределение Стьюдента)[3]. Ее значение, вычисленное по результатам испытаний, сравнивается с критическим значением, взятым из справочной таблицы[4]. Если выполняется неравенство, то гипотеза принимается. Однако статистические методы применимы только в том случае, если оценивается адекватность модели существующей системе. На проектируемой системе провести измерения, естественно, не представляется возможным. В этом случае в качестве эталонного объекта принимается концептуальная модель проектируемой системы и оценка адекватности программно реализованной модели заключается в проверке того, насколько корректно она отражает концептуальную модель. При проверке адекватности модели как существующей, так и проектируемой системы реально может быть использовано лишь ограниченное подмножество всех возможных значений входных параметров (рабочей нагрузки и внешней среды). В связи с этим для обоснования достоверности получаемых результатов моделирования большое значение имеет проверка устойчивости модели[5]. Устойчивость модели - это ее способность сохранять адекватность при исследовании эффективности системы на всем возможном диапазоне рабочей нагрузки, а также при внесении изменений в конфигурацию системы. Чем ближе структура модели структуре системы и чем выше степень детализации, тем устойчивее модель. Устойчивость результатов моделирования может быть также оценена методами математической статистики.
Дата добавления: 2014-01-04; Просмотров: 10329; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |