КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Включение цепи с резистором и конденсатором на синусоидальное напряжение
Включение цепи с резистором и конденсатором на постоянное напряжение (заряд конденсатора) Из схемы, приведенной на рис. 1.10, следует, что установившаяся составляющая напряжения на конденсаторе uCу = U, а свободная составляющая, очевидно, равна
uCсв = A e-t/τ, τ = RC. Полагаем, что до замыкания ключа конденсатор не был заряжен (Uс(0-) = 0). На основании законов коммутации uC(0-) = uC(0+) = 0, при t = 0; следовательно: uC(0) = uCу(0) + uCсв(0) или 0 = U + A, откуда А = -U. Тогда переходное напряжение на конденсаторе uC = U (1 - e-t/τ), а переходный ток в цепи . Зависимости напряжений и токов от времени показаны на рис. 1.10. Из них видно, что напряжение на конденсаторе возрастает по экспоненциальному закону от нуля до напряжения источника, а ток уменьшается от начального значения до нуля также по экспоненте. Длительность их изменения определяется постоянной времени τ = RC. Здесь как и в п.1.5.1 время переходного процесса принимается равным t ≈ (3 ÷ 5)τ.
Пусть напряжение источника изменяется по закону u = Um sin(ωt + ψ). Установившаяся составляющая напряжения на конденсаторе (см. рис. 1.11) равна: uCу = -Um XC / Z sin(ωt + ψ – φ – π / 2). где: - полное сопротивление цепи; Свободная составляющая напряжения на конденсаторе uCсв = A e-t/τ, τ = RC. Переходное напряжение на конденсаторе .
Полагая, что uC(0-) = 0, для постоянной интегрирования получим . Окончательно напряжение на конденсаторе можно записать в виде . Ток в цепи . Зависимости переходного напряжения на конденсаторе от времени при различных значениях разностей ψ - φ показаны на рис. 1.12. Их анализ позволяет сделать следующие выводы. Если в момент включения мгновенное значение установившегося напряжение на конденсаторе равно нулю (ψ – φ – π / 2 = 0), то и свободная составляющая напряжения равна нулю. В цепи сразу устанавливается режим (рис. 1.12 а). Если в момент включения мгновенное значение установившегося напряжение на конденсаторе имеет наибольшее значение (ψ – φ – π / 2 = π / 2), то переходное напряжение достигает максимального значения приблизительно через половину периода и может приблизиться к удвоенной амплитуде установившегося напряжения, но не превысит его (рис. 1.12 в).
Дата добавления: 2014-01-04; Просмотров: 806; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |