Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение закона распределения результатов измерений или




Определение точечных оценок закона распределения результатов

измерений. На этом этапе определяются:

− среднее арифметическое значение X измеряемой величины по

− оценка СКО результата измерения Sx

− оценка СКО среднего арифметического значения Sx.

В соответствии с критериями, рассмотренными выше, исключаются грубые погрешности и промахи. После их исключения проводится повторный расчет среднего арифметического значения и оценок его СКО.

случайных погрешностей измерений. В последнем случае от выборки результатов измерений x 1, x 2,…, xn переходят к выборке отклонений от

среднего арифметического Δ x 1, Δ x 2,…, Δ xn, где Δ xi = xiXср. Первым шагом при идентификации закона распределения является построение по исправленным результатам измерений xi, где i =1, 2,…, n, вариационного ряда (упорядоченной выборки) yi, где y 1 = min xi и yn = max xi. Β вариационном ряду результаты измерений (или их отклонения от среднего арифметического) располагают в порядке возрастания. Далее этот ряд разбивается на оптимальное число m, как правило, одинаковых интервалов группирования длиной h =(y 1 + yn)/ m. Оптимальным является такое число интервалов m, при котором

возможное максимальное сглаживание случайных флуктуации данных сопровождается минимальным искажением от сглаживания самой кривой искомого распределения.

Далее определяют интервалы группирования экспериментальных данных в виде Δ1 = (y 1, y 1 + h); Δ2 =(y 1 + h, y 1 + 2 h);…; Δ m = (ynh, yn) и подсчитывают число попаданий nk (частоты) результатов измерений в каждый интервал группирования. Сумма частот должна равняться числу измерений. По полученным значениям рассчитывают вероятности попадания результатов измерений (частости) в каждый из интервалов

группирования по формуле pk = nk/ n, где k =1, 2,…, m. Проведенные расчеты позволяют построить гистограмму, полигон и кумулятивную кривую. Для построения гистограммы по оси результатов наблюдений x (рис.15) откладываются интервалы Δ k в порядке

возрастания номеров и на каждом интервале строится прямоугольник высотой pk.

Площадь, заключенная под графиком, пропорциональна числу наблюдений n. Иногда высоту прямоугольника откладывают равной эмпирической плотности вероятности pk * = pk/ Δ k = nk/(n Δ k), которая является оценкой средней плотности в интервале Δ k. В этом случае площадь под гистограммой равна единице. При увеличении числа интервалов и соответственно уменьшении их длины гистограмма все более приближается к гладкой кривой – графику плотности распределенияn вероятности. Следует отметить, что в ряде случаев производят расчетное симметрирование гистограммы, методика которого приведена в [17].

Полигон представляет собой ломаную кривую, соединяющую середины верхних оснований каждого столбца гистограммы (см. рис. 4.12, а). Он более наглядно, чем гистограмма, отражает форму кривой распределения. За пределами гистограммы справа и слева остаются пустые интервалы, в которых точки, соответствующие их серединам, лежат на оси абсцисс. Эти точки при построении полигона соединяют между собой отрезками прямых линий. В результате совместно с осью x образуется замкнутая

фигура, площадь которой в соответствии с правилом нормирования должна быть

 

Рис.15. Гистограмма, полигон (а) и кумулятивная кривая (б)

Кумулятивная кривая – это график статистической функции распределения. Для ее построения по оси результатов наблюдений (рис.15, б) откладывают интервалы Δ k в порядке возрастания номеров и на каждом интервале строят прямоугольник высотой

 

Значение Fk называется кумулятивной частостью, а сумма nk –кумулятивной частотой.

По виду построенных зависимостей может быть оценен закон распределения результатов измерений.

3. Оценка закона распределения по статистическим критериям. При числе наблюдений n > 50 для идентификации закона распределения используется критерий Пирсона χ2 (хи-квадрат) или критерий Мизеса–Смирнова (ω2). При 50 > n >15 для проверки нормальности закона распределения применяется составной критерий (d-критерий), приведенный в ГОСТ 8.207–76. При n <15 принадлежность экспериментального распределения к нормальному не проверяется.

4. Определение доверительных интервалов случайной погрешности.

Если удалось идентифицировать закон распределения результатов измерений, то с его использованием находят квантильный множитель zp при заданном значении доверительной вероятности Р. В этом случае доверительные границы случайной погрешности Δ = ± zp Sx.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1204; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.