КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Проводящие пути от рецепторов внутренних раздражений
Проводящие пути от рецепторов внутренних раздражений могут быть разделены на проводящие пути от аппарата движения (собственно тела), т. е. от проприоцепторов (proprius — собственный), составляющих кондуктор двигательного анализатора, и пути от рецепторов внутренностей и сосудов, т. е. интероцепторов; вторая группа путей является кондуктором интероцеп-тивного анализатора. Проводящие пути двигательного анализатора Двигательный анализатор воспринимает глубокую проприоцептивную чувствительность, к которой относятся мышечно-суставное чувство, вибрационная чувствительность, чувство давления и веса (гравитация). Основной вид проприоцептивной чувствительности — это мышечно-суставное чувство, т. е. импульсы, которые возникают в связи с изменениями степени натяжения суставной сумки, сухожилий и напряжения мышц; благодаря этим импульсам у человека создается представление о положении тела и частей его в пространстве и об изменении этого положения (что имеет, в частности, значение при полетах в космос, где создается состояние невесомости). Проводящими путями двигательного анализатора являются tractus gangliobulbothalamocorticalis и tractus spinocerebellaris anterior et posterior. Tractus gangliobulbothalamocorticalis (см. рис. 349). Рецепторы находятся в костях, мышцах, сухожилиях, суставах, т. е. в собственно теле, отчего называются проприоцепторами (рис. 351). Кондуктор состоит из трех нейронов. Клеточное тело первого нейрона помещается в спинномозговом узле. Аксон этой клетки делится на две ветви — периферическую, идущую в составе мышечного нерва от проприо-цептора, и центральную, идущую в составе задних корешков в задние канатики спинного мозга, fasciculus gracilis и fasciculus cuneatus, до продолговатого мозга (см. рис. 270, 348, 349). Здесь они оканчиваются в соименных ядрах названных канатиков — nucleus gracilis и nucleus cuneatus (tractus gangliobulbaris). В этих ядрах помещаются тела вторых нейронов. Аксоны их в составе lemniscus medialis достигают латеральных ядер таламуса, где начинается третье звено. Аксоны клеток последнего направляются
Рис. 351. Пути трехчленной (а) и двучленной (б) проприо-цептивных рефлекторных дуг. 1 — мышечные волокна; 2 — двигательные окончания; 3 — сухожилие; 4 - чувствительное окончание в сухожилии; 5 — периферическое волокно чувствительного нейрона; 6 — двигательное волокно; 7 — передний корешок; 8 — спинномозговой узел; 9 — задний корешок; 10 — восходящий чувствительный путь заднего канатика; 11 — нисходящий двигательный путь (боковой пирамидный путь); 12 — двигательная клетка переднего рога; 13 — вставочный нейрон. через capsula interna (см. рис. 297) в кору предцентральной извилины, где помещается корковый конец двигательного анализатора (поля 4, 6; см. рис. 299). По проприоцептивным путям (пройдя спинномозговые нервы) в кору головного мозга поступают нервные импульсы: по fasciculus gracilis — от мускулатуры нижних конечностей и нижней половины туловища и по fasciculus cuneatus — от верхней половины туловища и верхней конечности. Проприоцептивные волокна от мышц головы проходят по черепным нервам: тройничному (V) — от мышц глаза и от жевательной мускулатуры, VII — от мимической мускулатуры, IX, X, XI и XII — от языка, от мускулатуры глотки и других мышц бывшего жаберного аппарата. При выпадении глубокой (проприоцептивной) чувствительности больной утрачивает представление о положении частей своего тела в пространстве и о перемене положения; движения теряют свою четкость, согласованность, наступает расстройство координации движений — атаксия. В отличие от мозжечковой (двигательной) атаксии она называется сенсорной (чувствительной). Не все пути проприоцептивной чувствительности доходят до коры. Подсознательные проприоцептивные импульсы направляются в мозжечок, который является важнейшим центром проприоцептивной чувствительности. Проприоцептивные пути к мозжечку (рис. 352). Чувствительные подсознательные импульсы от аппарата движения (костей, суставов, мышц и сухожилий) достигают мозжечка посредством спинальных, проприоцептивных путей, из которых главнейшие — tractus spinocerebellaris posterior et anterior (см. рис. 270). 1. Tractus spinocerebellaris posterior. Клеточное тело первого нейрона лежит в спинномозговом узле, аксон делится на две ветви, из которых периферическая идет в составе мышечного нерва от рецептора, заложенного в той или иной части аппарата движения, а центральная в составе заднего корешка проникает в задние рога спинного мозга и при помощи своих концевых ветвей и коллатералей разветвляется вокруг nucleus thoracicus. В nucleus thoracicus лежат клетки 21* Рис. 352. Восходящие и нисходящие пути мозжечка. / — tr. spinocerebellaris posterior; 2, 3 — tr. spinocerebellaris anterior; 2 — часть, перекрещивающаяся в среднем мозге; 3 — часть, перекрещивающаяся в спинном мозге; 4 — tr. rub-rospinalis; 5 — tr. vestibulospinalis; 6 — tr. olivo-spinalis; 7 — tr. thalamocorticalis; 8 — thalamus; 9 — nucl. ruber; 10 — червячок мозжечка; 11 — nucl. dentatus cerebelli; 12 - олива и ядра pars vestibularis VIII пары черепных нервов; 13 — связи мозжечка и красного ядра; 14 — tr. corticopontocerebellaris. второго нейрона, аксоны которых и образуют tractus spinocerebellaris posterior. Nucleus thoracicus, как показывает название, лучше выражено в грудном отделе на уровне от последнего шейного сегмента до II поясничного. Дойдя в составе бокового канатика спинного мозга до продолговатого по своей стороне, этот тракт в составе нижних мозжечковых ножек достигает коры червя. На своем пути в спинном и продолговатом мозге он не перекрещивается, отчего его называют прямым мозжечковым трактом. Однако, войдя в мозжечок, он большей своей частью перекрещивается в черве. 2. Tractus spinocerebellaris anterior. Первый нейрон тот же, что и у заднего тракта. В substantia intermedia centralis серого вещества спинного мозга помещаются клетки вторых нейронов, аксоны которых, образуя tractus spinocerebellaris anterior, входящий в передние отделы бокового канатика своей и противоположной стороны через commissura alba, совершают в ней перекрест. Тракт поднимается через продолговатый мозг и мост до верхнего мозгового паруса, где снова происходит перекрест. После этого волокна входят в мозжечок через его верхние ножки, где заканчиваются в коре червя. В результате весь этот путь оказывается перекрещенным дважды; вследствие этого проприоцептивная чувствительность передается на ту же сторону, с которой поступила. Таким образом, оба мозжечковых пути соединяют одноименные половины спинного мозга и мозжечка. Мозжечок получает также проприоцептивные импульсы от nucleus gra-cilis и nucleus cuneatus, расположенных в продолговатом мозге. Отростки клеток, заложенных в этих ядрах, идут в мозжечок через его нижние ножки. Все пути глубокой (подсознательной) чувствительности заканчиваются в черве, т. е. в древней части мозжечка, paleocerebellum. Интероцептивный анализатор Интероцептивный анализатор в отличие от других не имеет компактной и морфологически строго очерченной проводниковой части, хотя он и сохраняет специфичность на всем своем протяжении. Рецепторы его, называемые интероцепторами, рассеяны во всех органах растительной жизни; внутренностях, сосудах, в непроизвольной мускулатуре и железах кожи и др. Кондуктор состоит из афферентных волокон вегетативной нервной системы, идущих в составе симпатических, парасимпатических и анимальных нервов и далее в спинном и головном мозге до коры. Часть кондуктора интероцептивного анализатора составляют афферентные волокна, идущие в составе черепных нервов (V, VII, IX, X) и несущие импульсы от органов растительной жизни, расположенных в области распространения иннервации каждого из этих нервов. Образуемый ими афферентный путь разбивается на 3 звена: клетки первого звена лежат в узлах этих нервов (ganglion trigeminale, ganglion geniculi, ganglion inferius); клетки второго нейрона находятся в ядрах этих нервов (nucleus spinalis п. trigemini, nucleus solitarius nn. VII, IX, X). Исходящие из этих ядер волокна переходят на другую сторону, направляясь к таламусу. Наконец, клетки третьего звена заложены в таламусе. Значительную часть кондуктора интероцептивного анализатора образует блуждающий нерв, являющийся главным компонентом парасимпатической иннервации. Идущий по нему афферентный путь также разбивается на 3 звена: клетки первых нейронов лежат в ganglion inferius n. vagi, клетки вторых нейронов — в nucleus solitarius. Исходящие из этого ядра волокна блуждающего нерва вместе с отростками вторых нейронов языкоглоточного нерва переходят на противоположную сторону, перекрещиваясь с волокнами противоположной стороны, и поднимаются по стволовой части мозга. На уровне верхних холмиков крыши среднего мозга они присоединяются ко вторым нейронам кожного анализатора (lemmscus medialis) и достигают таламуса, где лежат клетки третьих нейронов. Отростки последних идут через заднюю треть задней ножки внутренней капсулы к нижнему отделу постцентральной извилины. В этом месте располагается одна из частей коркового конца интероцептивного анализатора, связанного с парасимпатическими волокнами черепных нервов и областью их иннервации. Афферентные пути от органов растительной жизни идут также в составе задних корешков спинномозговых нервов. Клетки первых нейронов в этом случае лежат в спинномозговых узлах. Мощный коллектор афферентного пути от органов растительной жизни проходит через внутренностные нервы (nn. splanchnici major et minor). Различные группы нервных волокон этих нервов восходят в спинном мозге в составе его задних и боковых канатиков. Афферентные волокна задних канатиков передают интероцептивные импульсы, достигающие через таламусы коры большого мозга. Афферентные волокна боковых канатиков оканчиваются в ядрах ствола мозга, мозжечка и таламуса (nucleus ventralis posterior). Итак, в таламусе лежат клетки третьих нейронов всего кондуктора интероцептивного анализатора, связанного как с симпатической, так и с парасимпатической иннервацией. Поэтому в таламусе происходит замыкание интероцептивных рефлекторных дуг и возможен «выход» на эфферентные пути. Замыкание для отдельных рефлексов может происходить и на других, более низких уровнях. Этим объясняется автоматическая, подсознательная, деятельность органов, управляемых вегетативной нервной системой. Корковый конец интероцептивного анализатора, кроме постцентральной извилины, находится в премоторной зоне, где заканчиваются афферентные волокна, идущие от таламуса. Интероцептивные импульсы идут по внутренностным нервам, достигают также коры пред- и постцентральных извилин в зонах кожно-мышечной чувствительности. Возможно, что эти зоны содержат первые корковые нейроны эфферентных путей вегетативной нервной системы, осуществляющие кортикальную регуляцию вегетативных функций. С этой точки зрения эти первые корковые нейроны могут рассматриваться как своего рода аналоги пирамидных клеток, являющихся первыми нейронами пирамидных путей. Как видно из вышеизложенного, интероцептивный анализатор в структурном и функциональном отношениях сходен с экстероцептивными анализаторами, однако площадь коркового конца интероцептивного анализатора значительно меньше по сравнению с экстероцептивными. Этим объясняется его «грубость», т. е. меньшая тонкость, точность дифференцировок по отношению к сознанию. На всех уровнях центральной нервной системы: в спинном мозге, мозжечке, в таламусах и коре большого мозга — имеется весьма тесное перекрытие путей и зон представительства анимальных и вегетативных органов. Висцеральные и соматические афферентные импульсы могут адресоваться к одному и тому же нейрону, «обслуживающему» и вегетативные, и соматические функции. Все это обеспечивает взаимодействие анимальной и вегетативной частей единой нервной системы. Высшая интеграция анимальных и вегетативных функций осуществляется в коре головного мозга, особенно в премоторной зоне. До сих пор были рассмотрены афферентные пути, связанные с определенной специализацией нейронов, проводящие те или иные специфические импульсы (тактильные, проприоцептивные, интероцептивные). Вместе с проводящими путями от органов зрения, слуха, вкуса, обоняния они составляют так называемую специфическую афферентную систему. Наряду с этим существует афферентная система, представленная так называемой ретикулярной формацией, относящаяся к неспецифическим структурам. Ретикулярная формация воспринимает все без исключения импульсы: болевые, световые, звуковые и т. д. Йо в то время как специфические импульсы от каждого органа чувств поступают по специальным проводниковым системам в кору соответствующих анализаторов, в ретикулярной формации не существует специализации нейронов; одни и те же нейроны воспринимают различные импульсы и передают их во все слои коры. Таким образом, ретикулярная формация составляет вторую афферентную систему.
Дата добавления: 2014-01-04; Просмотров: 1117; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |