Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общая часть

22* 643


Зрачок лежит не точно в ее середине, а немножко смещен в сторону носа. Радужка играет роль диафрагмы, регулирующей количество света, поступаю­щего в глаз, благодаря чему зрачок при сильном свете суживается, а при слабом расширяется. Наружным своим краем, margo ciliaris, радужка соединена с ресничным телом и склерой, внутренний же ее край, окружаю­щий зрачок, margo pupillaris, свободен. В радужке различают переднюю поверхность, facies anterior, обращенную к роговице, и заднюю, facies posterior, прилегающую к хрусталику. Передняя поверхность, видимая через прозрачную роговицу, имеет различную окраску у разных людей и обусловливает цвет их глаз. Это зависит от количества пигмента в поверхностных слоях радужки. Если пигмента много, то глаза имеют коричневый (карий) вплоть до черного цвет, наоборот, если слой пиг­мента слабо развит или даже почти отсутствует, то получаются смешанные зеленовато-серые и голубые тона: главным образом это происходит от просвечивания черного ретинального пигмента на задней стороне радужки. Радужная оболочка, выполняя функцию диафрагмы, обладает удивительной подвижностью, что обеспечивается тонкой приспособленностью и корре­ляцией составляющих ее компонентов.

Так, основа радужки, stroma iridis, состоит из соединительной ткани, имеющей архитектуру решетки, в которую вставлены сосуды, идущие радиаль-но, от периферии к зрачку. Эти сосуды, являющиеся единственными носите­лями эластических элементов (так как соединительная ткань стромы не содержит эластических волокон), вместе с соединительной тканью образуют эластичный скелет радужки, позволяющий ей легко изменяться по величине.

Сами движения радужной оболочки осуществляются мышечной системой, залегающей в толще стромы. Эта система состоит из гладких мышечных волокон, которые частью располагаютсягкольцеобразно вокруг зрачка, образуя мышцу, суживающую зрачок, m. sphincter pupillae, а частью расходятся радиарно от зрачкового отверстия и образуют мышцу, расширяющую зрачок, m. dilatator pupillae. Обе мышцы взаимно связаны и действуют друг на друга: сфинктер растягивает расширитель, а расширитель расправ­ляет сфинктер. Благодаря этому каждая мышца попадает в свое исход­ное положение, чем и достигается быстрота движений радужки. Эта единая мышечная система имеет punctum fixum на ресничном теле.

М. sphincter pupillae иннервируется парасимпатическими волокнами, идущими из добавочного ядра глазодвигательного нерва в составе п. oculomotorius, a m. dilatator pupillae — симпатическими из truncus sympathi-cus.

Непроницаемость диафрагмы для света достигается наличием на ее зад­ней поверхности двухслойного пигментного эпителия. На передней поверх­ности, омываемой жидкостью, она покрыта эндотелием передней камеры.

Срединное расположение сосудистой оболочки между фиброзной и сет­чатой способствует задержанию ее пигментным слоем излишних лучей, падающих на сетчатку, и распределению сосудов во всех слоях глазного яблока.

Сосуды и нервы сосудистой оболочки. Артерии происходят от ветвей a. ophthalmica, из которых одни входят сзади глазного яблока (аа. ciliares posteriores breves et longi), а другие спереди по краю роговицы (аа. ciliares anteriores). Анасто-мозируя между собой вокруг ресничного края радужной оболочки, они образуют circulus arteriosus iridis major, от которого отходят веточки к corpus ciliare и радужке, а вокруг зрачкового отверстия — circulus arteriosus iridis minor. Вены образуют густую сеть в со­судистой оболочке. Кровь из них выносится главным образом посредством 4 (или 5 — 6) вортикозных вен, vv. vorticosae (напоминающие водоворот — vortex), которые по экватору глазного яблока на одинаковых расстояниях прободают косо склеру и вливаются в глазные вены. Спереди вены из ресничной мышцы впадают в sinus venosus sclerae, который


а

Рис. 370. Строение сетчатой оболочки глаза.

a — choroidea; 6 — corpus vitreum; / — stratum pigmentosum retinae; 2 — палочки и колбочки; 3 — mem-brana limitans gliae externa; 4 — stratum granulosum externum; 5 — stratum plexiforme externum retinae; 6 - stratum granulosum internum; 7 - stratum plexiforme internum; 8 - stratum ganglionare; 9 - stratum fibrarum nervosatum; 10 - membrana limitans interna.

имеет отток в vv. ciliares anteriores. Венозный синус сообщается также с пространствами радужно-роговичного угла.

Нервы сосудистой оболочки содержат в себе чувствительные (от п. trigeminus), пара­симпатические (от п. oculomotorius) и симпатические волокна.

III. Сетчатка, или сетчатая оболочка, retina (рис. 370), — самая внутрен­няя из трех оболочек глазного яблока, прилегающая к сосудистой оболоч­ке на всем ее протяжении вплоть до зрачка. В противоположность осталь­ным оболочкам она происходит из эктодермы (из стенок глазного бокала;


Рис. 371. Внутренняя поверхность глазного яблока в его задней части (глазное дно).

/ — диск зрительного нерва, из центра которого (2) выходят сосуды сетчатки.

см. о развитии глаза) и сообразно своему происхождению состоит из двух частей: наружной, содержащей пигмент, pars pig-mentosa, и внутренней, pars nervosa, ко­торая разделяется по своей функции и строению на два отдела: задний несет в себе светочувствительные элементы — pars optica retinae, а передний их не со­держит. Граница между ними обозначается зубчатым краем, 6га serrata, прохо­дящим на уровне перехода choroidea в orbiculus ciliaris ресничного тела. Pars optica retinae почти совершенно прозрачна и только на трупе мутнеет. При рассматривании у живого посредством офтальмоскопа глазное дно кажется темно-красным благодаря просвечиванию сквозь прозрачную сетчатку крови в сосудистой оболочке. На этом красном фоне на дне глаза видно беловатое округлое пятно, представляющее место выхода из сетчатки зрительного нерва, который, выходя из нее, образует здесь так называемый диск зрительного нерва, discus n. optici, с кратерообразным углубле­нием в центре (excavatio disci). При осмотре зеркалом хорошо также видны исходящие из этого углубления сосуды сетчатой оболочки. Волокна зрительного нерва, лишившись своей миелиноврй оболочки, распространяются от диска во все стороны по pars optica retinae. Диск зрительного нерва, имеющий около 1,7 мм в диаметре, лежит несколько медиально (в сторону носа) от заднего полюса глаза. Латерально от него и вместе с тем немного в височную сторону от заднего полюса заметно в форме овального поля 1 мм в поперечнике так называемое пятно, macula, окрашенное у живого в красно-коричневый цвет с точечной ямкой, fovea centralis, посредине. Это место наибольшей остроты зрения (рис. 371).

В сетчатке находятся светочувствительные зрительные клетки, периферические концы которых имеют вид палочек и колбочек. Так как они расположены в наружном слое сетчатки, примыкая к пиг­ментному слою, то световые лучи, чтобы достичь их, должны пройти через всю толщу сетчатки. Палочки содержат в себе так называемый зрительный пурпур, который придает розовый цвет свежей сетчатой оболочке в темноте, на свету же он обесцвечивается. Образование пурпура приписывают клеткам пигментного слоя. Колбочки не содержат зрительного" пурпура. Нужно отметить, что в macula находятся только колбочки, а палочки отсутствуют. В области диска зрительного нерва светочувствительных элементов нет, вследствие чего это место не дает зрительного ощущения и потому называется слепым пятном.

Сосуды сетчатки. Сетчатая оболочка имеет свою собственную систему кровеносных сосудов. Она снабжается артериальной кровью из особой веточки от a. ophthalmica — центральной артерии сетчатки, a. centralis retinae, которая проникает в толщу зрительного нерва еще до выхода его из глазницы, а затем направляется по оси нерва к центру его диска, где разделяется на верхнюю и нижнюю ветви. Разветвления a. centralis retinae простираются до 6га serrata. Вены вполне соответствуют артериям и называются также с подстановкой только слова «venula». Все венозные ветви сетчатки собираются в v. centralis retinae, которая идет вместе с одноименной артерией покоси зрительного нерва и вливается в v. ophthalmica superior или в sinus cavernosus.


ВНУТРЕННЕЕ ЯДРО ГЛАЗА

Внутреннее ядро глаза состоит из прозрачных светопреломляющих сред: стекловидного тела, хрусталика, предназначенных для построения изобра­жения на сетчатке, и водянистой влаги, наполняющей глазные камеры и слу­жащей для питания бессосудистых образований глаза.

А. Стекловидное тело, corpus vitreum, выполняет полость глазного яблока кнутри от сетчатой оболочки и представляет совершенно прозрачную массу, похожую на желе, лежащую позади хрусталика. Благодаря вдавлению со стороны последнего на передней поверхности стекловидного тела образуется ямка — fossa hyaloidea, края которой соединяются с капсулой хрусталика посредством специальной связки.

Б. Хрусталик, lens, является весьма существенной светопреломляющей средой глазного яблока. Он совершенно прозрачен и имеет вид чечевицы или двояковыпуклого стекла. Центральные точки передней и задней поверх­ностей носят название полюсов (polus anterior et posterior), а пери­ферический край хрусталика, где обе поверхности переходят друг в друга, называется экватором. Ось хрусталика, соединяющая оба полюса, равна 3,7 мм при взгляде вдаль и 4,4 мм при аккомодации, когда хруста­лик делается более выпуклым. Экваториальный диаметр 9 мм. Хрусталик плоскостью своего экватора стоит под прямым углом к оптической оси, прилегая передней поверхностью к радужке, а задней — к стекловидному телу.

Хрусталик заключен в тонкую, также совершенно прозрачную бесструк­турную капсулу, capsula lentis, и удерживается в своем положении особой связкой — ресничным пояском, zonula ciliaris, которая слагается из множества тонких волокон, идущих от капсулы хрусталика к ресничному телу, где они залегают преимущественно между ресничными отростками. Между волок­нами связки находятся выполненные жидкостью пространства пояска, spatia zonularia, сообщающиеся с камерами глаза.

Благодаря эластичности своей капсулы хрусталик легко меняет свою кри­визну в зависимости от того, смотрим ли мы вдаль или вблизь. Это явление называется аккомодацией. В первом случае хрусталик вследствие натяжения ресничного пояска несколько уплощен; во втором, когда глаз должен быть установлен на близкое расстояние, ресничный поясок под влия­нием сокращения m. ciliaris ослабляется вместе с капсулой хрусталика и последний становится более выпуклым (рис. 372). Благодаря этому лучи, идущие от близко расположенного предмета, преломляются хрусталиком сильнее и могут соединиться на сетчатке. Хрусталик, так же как и стекло­видное тело, сосудов не имеет.



7

Рис. 372. Схема меха­низма аккомодации.

/ - lens; 2 - spatia zonularia; 3 — задняя камера глаза; 4 — передняя камера глаза; 5 — iris; б — m. ciliaris; 7 — corpus ciliare.



Рис. 373. Мышцы глазного яблока.

/ — зонд, оттягивающий m. levator palpebrae superioris (2); 3 — т. rectus superior; 4 — т. rectus lateralis (отрезана); 5 — m. rectus media-lis; 6 — n. opticus; 7 — задний конец m. rectus lateralis; 8 — m. rectus inferior; 9 — m. obliquus inferior; 10 — прикрепление m. levator palpebrae superioris к tarsus superior; 11 — trochlea; 12 — m. obliquus superior.

В. Камеры глаза (см. рис. 367, 372). Пространство, на­ходящееся между передней по­верхностью радужки и задней сто­роной роговицы, называется пе­редней камерой глазного яблока, camera anterior bulbi. Передняя и задняя стенки камеры сходятся вместе по ее окружности в углу, образуемом местом перехода ро­говицы в склеру, с одной стороны, и цилиарным краем радужки —

с другой. Угол этот, angulus iridocornealis, закругляется сетью перекладин. Между перекладинами находятся щелевидные пространства. Angulus iridocor­nealis имеет важное физиологическое значение в смысле циркуляции жид­кости в камере, которая через посредство указанных пространств опорож­няется в находящийся по соседству в толще склеры венозный синус.

Позади радужной оболочки находится более узкая задняя камера глаза, camera posterior bulbi, в состав которой входят и пространства между волокнами ресничного пояска; сзади она ограничивается хрусталиком, а сбоку — corpus ciliare. Через зрачок задняя камера сообщается с передней. Обе камеры глаза наполнены прозрачной жидкостью — водянистой влагой, humor aquosus, отток которой совершается в венозный синус склеры.

ВСПОМОГАТЕЛЬНЫЕ ОРГАНЫ ГЛАЗА

Мышцы глазного яблока (рис. 373). Двигательный аппарат глаза состоит из шести произвольных (поперечно-полосатых) мышц: верхней, нижней, медиальной и латеральной прямых мышц, тт. recti superior, inferior, medialis et lateralis, и верхней и нижней косых мышц, тт. obliquus superior et inferior. Все эти мышцы, за исключением нижней косой, начинаются в глубине глазницы в окружности зрительного канала и прилегающей части fissura orbitalis superior от находящегося здесь общего сухожильного кольца, anulus tendineus communis, которое в форме воронки охватывает зрительный нерв с a. ophthalmica, а также nn. oculomotorius, nasociliaris et abducens.

Прямые мышцы прикрепляются своими передними концами впереди экватора глазного яблока по четырем сторонам последнего, срастаясь с белочной оболочкой при помощи сухожилий. Верхняя косая мышца проходит через волокнисто-хрящевое колечко (trochlea), прикрепленное к fovea trochlearis (или к spfna trochlearis, если Она существует) лобной кости, затем она поворачивает под острым углом назад и вбок и при­крепляется к глазному яблоку на верхнелатеральной стороне его позади эква-


тора. Нижняя косая мышца начинается от латеральной окружности ямки слезного мешка и направляется под глазное яблоко вбок и кзади ниже переднего конца нижней прямой мышцы; сухожилие ее прикрепляется к склере сбоку глазного яблока позади экватора.

Прямые мышцы вращают глазное яблоко вокруг двух осей: поперечной (mm. recti superior et inferior), причем зрачок направляется кверху или книзу, и вертикальной (mm. recti lateralis et medialis), когда зрачок направляется вбок или в медиальную сторону. Косые мышцы вращают глазное яблоко вокруг сагиттальной оси. Верхняя косая мышца, вращая глазное яблоко, направляет зрачок вниз и вбок, нижняя косая мышца при своем сокраще­нии — вбок и кверху. Нужно заметить, что все движения обоих глазных яблок содружественны, так как при движении одного глаза в какую-нибудь сторону в ту же сторону движется одновременно и другой глаз. Когда все мышцы находятся в равномерном напряжении, зрачок смотрит прямо вперед и линии зрения обоих глаз параллельны друг другу. Так бывает, когда глядят вдаль. При рассматривании предметов вблизи линии зрения схо­дятся кпереди (конвергенция глаз).

Иннервация мышц глазного яблока: прямые мышцы, за исключением латеральной, и нижняя косая мышца иннервируются от п. oculomotorius, верхняя косая мышца — от п. trochlearis, а латеральная прямая — от п. abducens. Через п. ophthalmicus осуществляется чувствительная иннервация глазных мышц.

Клетчатка глазницы и влагалище глазного яблока. Глазница выстлана надкостницей, periorbita, которая срастается у canalis opticus и верхней глаз­ничной щели с твердой оболочкой мозга.

Позади глазного яблока залегает жировая клетчатка, corpus adiposum orbitae, занимающая все пространство между органами, лежащими в глазнице. Жировая клетчатка, прилегая к глазному яблоку, отделяется от последнего тесно связанным с нею соединительнотканным листком, который окружает яблоко под названием vagina bulbi. Сухожилия мышц глазного яблока, направляясь к местам своих прикреплений в склере, проходят через влагалище глазного яблока, которое дает для них влагалища, продол­жающиеся в фасции отдельных мышц.

Веки, palpebrae (греч. blepharon, отсюда — блефарит — воспаление века), представляют род раздвижных ширм, защищающих спереди глазное яблоко. Верхнее веко, ^alpebra superior, больше нижнего; верхней его границей служит бровь, supercilium, — полоска кожи с короткими волосками, лежащая на границе со лбом. При раскрывании глаза нижнее веко опускается лишь незначительно под влиянием собственной тяжести, верхнее же веко поднимает­ся активно благодаря сокращению подходящего к нему m. levator palpeb­rae superioris. Свободный край обоих век представляет узкую поверхность, ограниченную передней и задней гранями, hmbus palpebrdlis anterior et posterior. Тотчас сзади от передней грани вырастают из края века в несколько рядов короткие жесткие волоски — ресницы, cilia, служащие как бы решеткой для предохранения глаза от попадания в него разных мелких частиц (рис. 374).

. Между свободным краем век находится глазная щель, rima palpebrarum, через которую при раскрытых веках видна передняя поверхность глазного яблока. Глазная щель в общем имеет миндалевидную форму; латеральный угол ее острый, медиальный закруглен и образует так называемое слезное озеро, Idcus lacrimdlis. Внутри последнего видно небольшое розоватого цвета возвышение — слезное мясцо, carimcula lacrimdlis, содержащее жировую ткань и сальные железки с нежными волосками.


Рис. 374. Слезный аппарат правого

глаза.

/ — gl. lacrimalis; 2 — lacus lacrimalis; 3 — ca-

naliculus lacrimalis (superior); 4 — canaliculus

lacrimalis (inferior); 5 — saccus lacrimalis; 6 —

ductus nasolacrimalis; 7 — concha nasatis inferior.

Основа каждого века состоит из плотной соединительнотканной пластинки, tarsus, называемой по-русски не совсем правильно хря­щом века.

В области медиального угла глазной щели в ней находится утолщение — медиальная связка век, lig. palpebrale mediate, идущая горизонтально от обоих хрящей к cnsta lacrimalis anterior et poste­rior спереди и сзади от слезного мешка. Другое утолщение имеется

у латерального угла глазной щели в виде горизонтальной полоски, lig. palpebrale laterale, соответствующей шву, raphe palpebralis lateralis, между хрящами и боковой стенкой глазницы. В толще хрящей век заложены отвесно расположенные железы, glandulae tarsales, состоящие из продольных трубчатых ходов с сидящими на них альвеолами, в которых вырабатывается сало, sebum palpebrale, для смазки краев век. В верхнем хряще железы обыкновенно встречаются в числе 30 — 40, а в нижнем — 20 —30. Устья желез хряща век открываются точечными отверстиями на свободном крае века вблизи задней грани. Кроме этих желез, имеются еще и обыкновенные сальные железы, сопровождающие ресницы.

Верхнее веко, как уже отмечалось, имеет свою особую мышцу, поднимающую его кверху,— m. levator palpebrae superioris. Сзади хрящи век покрыты конъюнктивой, переходящей на их краях в кожу.

Соединительная оболочка глаза, tunica conjunctiva, одевает всю заднюю поверхность век и вблизи края глазницы заворачивается на глазное яблоко, покрывая его переднюю поверхность. Часть ее, покрывающая веки, носит название^ tunica conjunctiva palpebrarum, а часть облекающая глазное яблоко, — tunica conjunctiva bulbi. Таким образом, конъюнктива образует мешок, открытый спереди в области глазной щели. Конъюнктива похожа на слизистую оболочку, хотя по своему происхождению представляет продолжение наружного кожного покрова. На веках она плотно сращена с хрящами, а на остальном протяжении рыхло соединяется с подлежащими частями до края роговицы, где ее эпителиальный покров непосредственно переходит в эпителий cornea. Места перехода конъюнктивы с век на глазное яблоко носят название верхнего и нижнего сводов, for nix conjunctivae superior et inferior. Верхний свод глубже нижнего. Своды — это запасные складки конъюнктивы, необходимые для движения глаза и век. Такую же^ роль играет и полу лунная складка конъюнктивы, plica semilunaris conjunctivae, находящаяся в области медиаль­ного угла глазной щели латерально от caruncula lacrimalis. Морфоло­гически она представляет рудимент третьего века (мигательной перепонки).

Кровеносные сосуды век и конъюнктивы. Они тесно связаны между собой. Веки снабжаются кровью преимущественно из ветвей a. ophthalmica. На передней поверхности хрящей образуются две артериальные дуги — в верхнем веке arcus


Рис. 375. Схема зрительных путей.

■13

1 — зрительный нерв; 2 — зрительный пере­крест; 3 — зрительный тракт; 4 — таламус и латеральное коленчатое тело; 5 — центральный зрительный путь; 6 — sul. cal-carinus; 7 — мнестические (память) центры зрения; 8 — волокна зрительного тракта к крыше среднего мозга; 9 — nucl. accesso-rius III пары черепных нервов; 10 — волок­на, входящие в состав глазодвигательного нерва; //— ресничный узел; /2 —iris; 13 — поле зрения; /4 — сетчатка.

palpebralis superior и в нижнем — arcus palpebralis inferior. Ветви дуг снабжают кровью края век и конъюнктиву. Ве­ны соответствуют артериям и влива­ются с одной стороны в v. facalis и v. temporalis superficialis, а с другой — в vv. ophthalmicae. Лимфатические сосуды как из век, так и из конъюн­ктивы несут свою лимфу главным образом в поднижнечелюстные и под-подбородочные лимфатические узлы; из боковых частей век лимфа по­ступает также в околоушные лим­фатические узлы.

Нервы (чувствительные), раз­ветвляющиеся в коже век и в конъюнк­тиве, отходят от первой и второй ветвей тройничного нерва. Верхнее ве­ко иннервируется из п. frontalis, а у ла­терального угла — из п. lacrimalis. Нижнее веко получает свою иннер­вацию почти исключительно из п. in-fraorbitalis.

Слезный аппарат состоит из слезной железы, выделяющей слезы в конъюнктивальный мешок, и из начинающихся в последнем слезоотводя-щих путей. Слезная железа, glandula lacrimalis, дольчатого строения, альвеолярно-трубчатая по своему типу, лежит в fossa lacrimalis лобной кости. Выводные протоки ее, ductuli excretorii, в числе 5 — 12 открываются в мешок конъюнктивы в латеральной части верхнего свода. Выделяющаяся из них слезная жидкость оттекает в медиальный угол глазной щели к слез­ному озеру. При^ закрытых глазах она течет по так называемому слезному ручью, rivus lacrimalis, образующемуся между задними гранями краев обоих век и глазным яблоком. У слезного озера слезы поступают в точечные отверстия, расположенные у медиального конца век. Исходящие из отверстий два тонких слезных канальца, canaliculi lacrimales, обходя слезное озеро, впадают порознь или вместе в слезный мешок.

Слезный мешок, saccus lacrimalis, — верхний слепой конец носослезного протока, лежащий в особой костной ямке у внутреннего угла глазницы. Начинающиеся от стенки слезного мешка пучки pars lacrimalis m. orbicularis oculi (см. «Мышцы лица») могут расширять его и тем содействовать всасыванию слез через слезные канальцы. Непосредственное продолжение книзу слезного мешка составляет носослезный проток, ductus nasolacrimalis, проходящий в одноименном костном канале и откры­вающийся в полость носа под нижней раковиной (см. «Носовая полость»).

В заключение обобщим данные о строении глаза, изложив анатоми­ческие пути восприятия световых раздражений (схема зрительного анализа­тора см. рис. 370; рис. 375). Свет вызывает раздражение светочувствитель-


ных элементов, заложенных в сетчатке. Перед тем как попасть на нее, он проходит через различные прозрачные среды глазного яблока: сначала через роговицу, затем водянистую влагу передней камеры и далее через зрачок, который наподобие диафрагмы фотоаппарата регулирует количество световых лучей, пропускаемых в глубину. В темноте зрачок расширяется, чтобы пропустить больше лучей, на свету, наоборот, суживается. _ Эта регуляция осуществляется специальной мускулатурой (musculi sphincter et dilatator pupillae), иннервируемой вегетативной нервной системой.

Далее свет проходит через светопреломляющую среду глаза (хрусталик), благодаря которой глаз устанавливается для видения предметов на близкое или дальнее расстояние, так что независимо от величины последнего изображение предмета всегда падает на сетчатку. Такое приспособление (аккомодация) обеспечивается наличием специальной гладкой мышцы, m. ciliaris, меняющей кривизну хрусталика и иннервируемой парасимпати­ческими волокнами.

Для получения одного изображения в обоих глазах (бинокулярное зрение) линии зрения сходятся в одной точке. Поэтому в зависимости от расположения предмета эти линии при взгляде на далекие предметы рас­ходятся, а на близкие — сходятся. Такое приспособление (конвергенция) осуществляется произвольными мышцами глазного яблока (прямыми и косыми), иннервируемыми III, IV и VI парами черепных нервов. Регуляция величины зрачка, а также аккомодация и конвергенция тесно связаны между собой, так как работа непроизвольных и произвольных мышц согласуется вследствие координации иннервирующих эти мышцы ядер вегетативных и анимальных нервов и центров, заложенных в среднем и про­межуточном мозге. В результате всей этой согласованной работы изображение предмета падает на сетчатку, а попавшие на нее световые лучи вызывают соответствующее раздражение светочувствительных элементов.

Нервные элементы сетчатки образуют цепь из трех нейронов (см. рис. 370). Первое звено —это светочувствительные клетки сетчатки (палочки и колбочки), составляющие рецептор зрительного анализатора. Второе звено — биполярные нейроциты и третье — ганглиозные нейро-циты (ganglion n. optici), отростки которых продолжаются в нервные волокна зрительного нерва. Как продолжение мозга нерв покрыт всеми тремя мозговыми оболочками, которые образуют для него влагалища, срастающие­ся со склерой у глазного яблока. Между влагалищами сохраняются промежутки, spatia intervaginalia, соответствующие межоболочечным простран­ствам мозга. Выйдя из глазницы через canalis opticus, зрительный нерв подходит к нижней поверхности мозга, где в области chiasma opticum подвергается неполному перекресту. Перекрещиваются только медиальные волокна нервов, идущие от медиальных половин сетчатки; латеральные волокна нервов, идущие от латеральных половин сетчатки, остаются неперекре-щенными. Поэтому каждый зрительный тракт, tractus n. optici, отходящий от перекреста, содержит в своей латеральной части волокна, идущие от латеральной половины сетчатки своего глаза, а в медиальной — от медиаль­ной половины другого глаза. Зная характер перекреста, можно по характеру потери зрения определить место поражения зрительного пути. Так, например, при поражении левого зрительного нерва наступит слепота соименного глаза; при поражении левого зрительного тракта или зрительного центра каждого полушария наблюдается потеря зрения в левых половинах сетчатки обоих глаз, т. е. половинная слепота на оба глаза (гемианопсия); при поражении зрительного перекреста отмечается выпадение зрения в медиальной половине обоих глаз (при центральной локализации поражения) или полная слепота на оба глаза (при обширном поражении перекреста) (см. рис. 375).


Как перекрещенные, так и неперекрещенные волокна зрительных трактов заканчиваются двумя пучками в подкорковых зрительных центрах: 1) в верх­них холмиках крыши среднего мозга и 2) в pulvinar thalami и corpus geni-culatum laterale. Первый пучок оканчивается в верхнем холмике крыши среднего мозга, где лежат зрительные центры, связанные с заложенными в среднем мозге ядрами нервов, иннервирующих поперечно-полосатые мышцы глазного яблока и гладкие мышцы радужки. Благодаря этой связи в ответ на определенные световые раздражения происходят соответствен­но конвергенция, аккомодация и пупиллярный рефлекс.

Другой пучок оканчивается в pulvinar таламуса и в corpus geniculatum laterale, где заложены тела новых (четвертых) нейронов. Аксоны последних проходят через заднюю часть задней ножки capsulae internae и далее образуют в белом веществе полушарий большого мозга зрительную лучис­тость, radiatio optica, достигающую коры затылочной доли мозга. Описанные проводящие пути от рецепторов света до мозговой коры, начиная с биполяр­ных нейроцитов (второе звено нервных элементов сетчатки), составляют кондуктор зрительного анализатора. Корковым концом его является кора мозга, лежащая по берегам sulcus calcarinus (поле 17). Световые раздра­жения, падающие на рецептор, заложенный в сетчатке, превращаются в нерв­ные импульсы, которые проходят по всему кондуктору до коркового конца зрительного анализатора, где воспринимаются в виде зрительных ощущений.

ОРГАН ВКУСА

Значение органа вкуса, organum giistus, («химического чувства») состоит в опознавании достоинства пищи. Сначала вкусовые луковицы отдифферен-цировались от органов кожного чувства (рыбы). Затем они сосредоточились в ротовой и носовой полостях (амфибии), наконец, сконцентрировались в ротовой полости (рептилии и млекопитающие).

У человека большая часть луковиц находится в papillae vallatae et foliatae, значительно меньше в papillae fungiformes, и, наконец, часть их встречается на мягком небе, на задней стороне надгортанника и на внутренней поверхности черпаловидных хрящей. Луковицы содержат вкусо­вые клетки, которые составляют рецептор вкусового анализатора. Кондукто­ром его являются проводящие пути от рецепторов вкуса, состоящие из трех звеньев (рис. 376).

Первый нейрон помещается в узлах афферентных нервов языка. Нервами, проводящими чувство вкуса у человека, являются: 1) барабанная струна лицевого нерва (передние 2/з языка), 2) языкоглоточный нерв (задняя треть языка, мягкое небо и небные дужки) и 3) блуждающий нерв (надгортанник).

Расположение первого нейрона:

1. Ganglion geniculi. Периферические отростки клеток этого узла идут
в составе chorda tympani от вкусовых рецепторов передних двух третей слизис­
той оболочки языка. Центральные отростки направляются в составе
п. intermedius в мост.

2. Ganglion inferius IX пары. Периферические отростки клеток этого узла
идут в составе п. glossopharyngeus от вкусовых рецепторов слизистой оболочки
задней трети языка. Центральные отростки направляются в составе того
же нерва в продолговатый мозг.

3. Ganglion inferius n. vagi. Периферические отростки клеток этого
узла в составе п. laryngeus superior идут от вкусовых рецепторов, распо-


Рис. 376. Схема вкусовых путей.

1 - волокна общей чувствительности (из п. lingualis); 2 — вкусовые волокна chordae tympani; 3 — вкусовые волокна п. glossopharyngei; 4 — вкусовые волокна п. vagi; 5 — gangl. geniculi; 6 — ganl. inferius п. glossopha-ryngei; 7 —gangl. inferius n. vagi; 8 — n. vagus; 9 — n. glossopharyngeus; 10 — n. facialis; // — medulla oblongata; 12 — n. trigeminus; /5 — nucl. solitarius; /-/ — fossa rhomboidea; 15 — nucl. sensorius superior n. trigemini; 16 — путь, соединяющий nucleus solitarius с thalamus; 17 — волокна, соединяющие thalamus с областью вкусового анализатора; 18 — thalamus; 19 — uncus; 20 — область вкусового анализатора; 21 — gangl. trigeminale; 22 — п. lingualis; 23 — п. intermedius.

ложенных в области надгортанника. Центральные отростки в составе п. vagi направляются в продолговатый мозг.

Все описанные вкусовые волокна оканчиваются в продолговатом мозге и мосту, в nucleus solitarius nn. intermedii, glossopharyngei et vagi, где помещается второй нейрон. Вкусовой отдел nucleus solitarius связан со всеми двигательными ядрами продолговатого мозга, имеющими отношение к жеванию и глотанию, а также со спинным мозгом (контроль дыхания, кашля и рвоты).

Отростки вторых нейронов поднимаются из продолговатого мозга и моста к thalamus, где начинается третье звено к корковому концу вкусового анализатора. Последний лежит в коре gyrus parahippocampa-lis близ переднего конца височной доли, в uncus и в гиппокампе, побли­зости от центров обоняния; по другим данным — в коре покрышки (operculum). Клинические данные подтверждают скорее второе предположение. Химическое раздражение в рецепторе трансформируется в нервный импульс, который по кондуктору передается до коркового конца анализатора, где воспринимается в виде различных вкусовых ощущений.

ОРГАН ОБОНЯНИЯ

У всех животных, как позвоночных, так даже и беспозвоночных, орган обоняния, organum olfactus (рис. 377, 378), в существенной своей части состоит из чувствительных (нейросенсорных) обонятельных клеток, выстилающих обонятельную ямку, представляющую собой впячивание экто­дермы. У высших позвоночных идет дальнейшее усовершенствование


Рис. 377. Схема обонятельных путей.

/ — concha nasalis inferior; 2 — concha nasalis media; 3 — fila olfactoria; 4 — concha nasalis superior: 5 — нервные клетки bulbus olfactorius; 6 — bulbus olfactorius: 7, 8 — обонятельный путь от bulbus olfactorius; 9 — genu corporis callosi; 10 — нервные клетки в извилине, расположенной под corpus callosum; 11 — fornix; 12 — gyrus cinguli; 13 — волокна fornix, идущие в hippocampus; 14 — thalamus; 15 —tr. mamillotha-lamicus; 16 — isthmus gyri cinguli; 17 — corpus mamillare; 18 — волокна, идущие от uncus к corpus mamillare; 19 — gyrus dentatus; 20 — gyrus parahippocampalis; 21 — uncus; 22 — lobus temporalis; 23 — область обонятель­ного анализатора коры; 24, 25 — обонятельный путь; 26 — tr. olfactorius.

в смысле расширения и углубления носовой полости (обонятельных ямок), которая окружается хрящевой носовой капсулой черепа. Это усложнение достигает наибольшей степени у макросмических животных, отличающихся сильно развитым обонянием (хищные, грызуны, копытные и некоторые другие виды). Наоборот, микросмические животные, к числу которых принадлежит и человек, имеют более или менее редуцированный обонятельный аппарат. В связи с этим их обонятельный мозг развит значительно слабее по сравнению с мощным обонятельным мозгом макросмических животных. Наконец, у аносмических животных (дельфин) обонятельный аппарат исчезает еще в эмбриональной жизни.

Развитая носовая полость, как это видно у взрослого человека, вмещая орган обоняния, является вместе с тем и верхним дыхательным путем. Пахучие вещества, поступая вместе с воздухом при дыхании в полость носа, раздражают специфические чувствительные элементы обонятельного органа.

Эти чувствительные элементы, обонятельные нейросенсорные клетки, составляют рецептор обонятельного анализатора, который заложен в regio olfactoria, т. е. в слизистой оболочке носа, в области верхней носовой раковины и противолежащего участка носовой перегородки. Обоня­тельные клетки образуют первые нейроны обонятельного пути, аксоны которых в составе nn. olfactorii проникают через отверстия lamina cribrosa решетчатой кости в bulbus olfactorius, где и оканчиваются в обо­нятельных клубочках, glomeruli olfactorii. Здесь начинаются вторые н е й-



Рис. 378. Схема подкорковых обонятельных путей, соединяю­щих таламус с сосцевидным телом.

/ — таламус; 2 — узел поводка; 3 — ядро покрышки ножки мозга; 4 — заднее продырявленное вещество; 5 — сосцевидное тело; 6 — серый бугор; 7 — fasc. mamillothalamicus; 8 — перекрест зрительных нервов; 9 — пути от коры мозга к таламусу; 10 — пути от таламу-са к коре большого мозга.


роны (митральные клетки), аксоны которых идут в составе обонятельного тракта и оканчиваются в клетках серого вещества обонятельного тракта, trigonum olfactorium, substantia perforata anterior и septum pellucidum. Большая часть волокон доходит до коры gyrus parahippocampalis, до uncus, где помещается корковый конец обонятельного анализатора.

Сосуды и нервы. Артерии наружного носа происходят из a. facialis и анасто-мозируют с конечными веточками a. ophthalmica, а также с a. infraorbitalis. Главной артерией, питающей стенки носовой полости, является a. sphenopalatina (из a. maxillaris). В передней части полости разветвляются веточки аа. ethmoidales anterior et posterior (от а. ophthalmica). Вены наружного носа вливаются в v. facialis и v. ophthalmica. Отток венозной крови от слизистой оболочки полости носа совершается главным образом посредством ветвей v. sphenopalatina, впадающей через одноименное отверстие в plexus pterygoideus. Спереди отток происходит в вены верхней губы и наружного носа. Лимфатические сосуды из наружного носа и ноздрей несут лимфу в поднижнечелюстные лимфати­ческие узлы.

Нервы как наружного носа, так и носовой полости относятся к области разветвления первой и второй ветвей тройничного нерва. Слизистая оболочка передней части носовой полости иннервируется от п. ethmoidalis anterior (первой ветви п. tri-geminus), остальная ее часть — раковины и носовая перегородка — получает свою иннер­вацию от п. ethmoidalis posterior, а также от второй ветви тройничного нерва (пп. па-sales posteriores, n. nasopalatinus).

Все органы чувств в едином организме связаны между собой, особен­но в области коры головного мозга, где корковые концы всех анализато­ров соединены между собой ассоциативными путями. Благодаря этому достигаются взаимосвязь и взаимовлияние органов чувств, а также компен­саторное развитие одних анализаторов при выпадении других.


ПРИНЦИП ЦЕЛОСТНОСТИ В АНАТОМИИ (СИНТЕЗ АНАТОМИЧЕСКИХ ДАННЫХ)

Заканчивая изложение строения тела человека, необходимо отметить сле­дующее. Обычно анатомия изучает человеческий организм по системам, от­чего и называется систематической. Такое изучение диктуется невозмож­ностью сразу охватить всю сложность строения организма, поэтому при­ходится искусственно разлагать его на части и пользоваться методом анализа.

Совершенно необходимый аналитический подход вместе с тем приучает к не совсем правильному, механистическому взгляду на организм как на сумму систем и не воспитывает должного, диалектического представления об организме как о едином целом. Метод рассечения тела человека на части и изучения его по системам привел к неправильному отношению и к ана­томии как к науке только расчленяющей, аналитической, якобы не ставя­щей себе целью исследовать организм в его единстве. Анатомия страдает от своего названия (anatemno — рассекаю), которое указывает на основной, но не единственный способ исследования. На самом деле анатомия — наука о строении не только отдельных систем, но и целого организма. Поэтому, кроме анализа, она использует метод синтеза, с помощью которого стремится составить целостное представление о строении тела человека.

1. Синтез анатомических данных необходимо проводить прежде всего для правильного представления о любом органе, который, будучи частью организма, сам является целостным образованием.

Целостность органа — это не арифметическая сумма составляющих его тканей, а органическое единство, в котором одни части тесно взаимо­действуют с другими. Это особенно ясно выступает в органах, имеющих несколько функций и отличающихся разнородным характером, например в кости. До недавнего времени полагали, что костное вещество является лишь футляром для костного мозга, который механически заполняет кост­номозговое пространство и ячейки губчатого вещества. При этом кость выполняет механическую функцию (опора, движение и защита), а костный мозг — биологическую (гемопоэз, иммунитет).

На самом же деле, живая кость в отличие от мацерированной состоит не только из костного вещества определенной структуры, но также из покрывающих ее суставных хрящей и надкостницы и выполняющего ее полости костного мозга. Между костным веществом и костным мозгом имеется не только топографическая связь, но также структурная и функцио­нальная. Обе названные функции (механическая и биологическая) тесно связаны между собой. Нормальная гемопоэтическая функция красного костного мозга обусловливает хорошо построенную и функционирующую кость, а при ее нарушении страдает и структура кости. И, наоборот, костное вещество оказывает глубокое влияние на содержащийся в его полостях и ячейках костный мозг.

Единство этих двух частей кости обусловлено общностью их крово­снабжения и иннервации. Благодаря этому усиленная механическая функция кости, обусловленная большой работой мускулатуры, связана с повышен­ным кровоснабжением костного вещества и не отделимого от него костного мозга. Лучшее питание костного мозга определяет улучшение его


кроветворной и иммунобиологической функций, что благотворно отражается на жизнедеятельности организма. Это и составляет одну из положительных сторон физкультуры. Любой сустав в живом целостном организме — это не только кости и их соединения, но и образования, относящиеся к различ­ным системам, а именно: мышцы, приводящие в движение костные рычаги, сосуды и нервы, обеспечивающие нейрогуморальную регуляцию, и кожа, покрывающая сустав. Без участия всех названных компонентов сустав не может действовать.

Сказанное относится к строению и любого внутреннего органа. Так, например, печень, кроме своих специфических структур (печеночные клетки, желчные ходы и др.), состоит из образований, принадлежащих различ­ным системам. Это — нервы печени и ее сосуды (артерии, разветвления воротной вены, печеночные вены и лимфатические сосуды). Все они составляют неотъемлемую часть органа. При этом внутриорганные сосуды распределяются в органе соответственно строению, функции и развитию органа и организма в целом. Так же распределяются и нервы. Из этого следует, что нельзя говорить отдельно об органе и отдельно о его сосудах и нервах, ибо сосуды и нервы анатомически и физиологически входят в содержание органа и без них нельзя понять его строение. Поэтому при изложении строения органа приводятся сведения о его васкуляризации и иннервации.

Другой иллюстрацией целостности внутреннего органа может служить легкое. В зависимости от уровня исследования в нем выделяют разные части: на макроскопическом уровне — доли и сегменты, на макро-микро-скопическом — дольки и ацинусы, на микроскопическом — альвеолы и клетки, на субмикроскопическом — клеточные элементы и молекулы. Все эти части легкого представляют органическое единство различающихся между собой дифференцированных частей. Специфическую структуру легких составляют дыхательная паренхима и бронхи. Последних сопровождают нервы и сосуды, принадлежащие различным системам: бронхиальные артерии и вены, легочные артерии и вены, лимфатические сосуды. Все они идут параллельно друг другу, подчиняясь общим закономерностям строения легкого, и составляют не арифметическую сумму слагаемых, а объединены внутренним органическим единством, обусловленным происхождением и развитием легкого по ходу эволюции и в онтогенезе. В свою очередь это развитие определяется формообразующей ролью дыхательной функции, которая является одним из отражений единства организма и среды, приспособления к последней не только организма в целом, но и его отдельных органов. Таким образом, целостность конструкции органа — это исторически возникающее и развивающееся качество. Для понимания этого качества требуется не только анализ, но и синтез.

2. Синтез анатомических данных следует проводить не только в отно­шении каждого органа, но и крупной части тела. В качестве примера возь­мем туловище, где после рождения сохраняется сегментарность. Сегменты тела — сомиты — определяют метамерную структуру и всех отдельных частей его: склеротома, миотома и нейротома. Поэтому развивающиеся из этих частей сомита системы (костная, мышечная, нервная), а также сосудистая приобретают сегментарное строение.

В результате сегменты представляют единые образования, построенные из разных систем тела, а именно: из костей (ребра), мышц (межреберные мышцы), нервов (межреберные нервы) и сосудов (межреберные артерии, вены и лимфатические сосуды). Все эти структуры, относящиеся к различ­ным системам, идут в каждом сегменте параллельно друг другу и состав­ляют единое анатомическое образование (рис. 379, см. цв. вклейку).


Так как в теле зародыша, кроме сомитов, возникают и осевые органы, расположенные вдоль тела (хорда и нервная трубка), то сегментарно развивающиеся органы оказываются связанными с осевыми. Поэтому ряд систем имеет части, расположенные как вдоль тела, так и поперек.

В костной системе туловища участвуют расположенный по оси тела позвоночный столб и поперечные сегменты — ребра; в нервной системе — расположенный вдоль тела спинной мозг и поперечно идущие корешки спинномозговых нервов; в артериальной системе — продольно лежащая аорта и ее поперечные ветви — межреберные и поясничные артерии; в венозной системе — продольно идущие нижняя полая и непарная и полунепарная вены и их поперечные притоки — поясничные и межреберные вены; в лимфати­ческой системе — продольно идущий грудной проток и впадающие в него межреберные лимфатические сосуды; в мышечной системе туловища мыш­цы лежат вдоль тела в виде сегментов (между ребрами и позвонками).

Таким образом, костная, мышечная, нервная и сосудистая системы туло­вища, будучи разными системами тела, вместе с тем как части целого отражают в своей топографии одни и те же общие законы строения организ­ма. Вследствие этого все они располагаются в значительной мере парал­лельно друг другу и составляют единые сегменты тела. Об этом отражении каждой отдельной системой тела общих принципов строения целостного организма говорилось при изложении закономерностей строения почти каждой системы — костной, мышечной, сосудистой и нервной.

К числу продольно расположенных органов зародыша относится и пер­вичная кишка, идущая параллельно хорде и нервной трубке. Поэтому раз­вивающийся из кишечной трубки пищеварительный тракт в основном также идет в том же направлении, что и позвоночный столб и спинной мозг.

Это показывает топографическое сходство в расположении органов как животной, так и растительной жизни.

3. В предшествующем изложении органы животной жизни рас­сматривались отдельно от органов растительной жизни.

В живом целостном организме эти две группы органов составляют неразрывное единство. Примером может служить скелетная мышца как орган. Она состоит не только из исчерченной мышечной ткани, но также из разных видов соединительной ткани, образующей сухожилия, фасции и прослойки между пучками мышечных волокон. Органической частью всякой мышцы являются нервы и сосуды, содержащие в своей стенке гладкую мускулатуру. Соответственно наличию произвольной и непроизвольной мы­шечной ткани в каждой мышце проходят нервные волокна, принадлежащие разным отделам нервной системы — анимальному и вегетативному.

Анимальные нервы осуществляют функциональную иннервацию попереч­но-полосатой мышечной ткани, т. е. выполняют животную функцию (движение). Вегетативные нервы обеспечивают сосудодвигательную иннерва­цию гладкой мышечной ткани сосудов, а также трофическую иннервацию, т. е. выполняют растительные функции (обмен веществ, питание). Следова­тельно, в каждой мышце происходит объединение анимальных и вегетатив­ных функций благодаря наличию представителей поперечно-полосатой и глад­кой мускулатуры, а также анимальной и вегетативной частей единой нервной системы.

Органы растительной и животной жизни находятся в определенных взаимоотношениях. Примером служат взаимоотношения сосудов, нервов и мышц, из которых первые — вегетативные органы, а остальные ани­мальные.

Сосуды и нервы в значительной части идут вместе и параллельно друг другу, отражая в своем ходе общие закономерности строения тела.


Они находятся в определенных взаимоотношениях с мышцами и фас­циями, причем последние, окружая сосуды и нервы, образуют сосудисто-нервные пучки. Н. И. Пирогов установил ряд законов расположения сосудов среди мышц и фасций, главнейший из которых гласит: все влагалища, в которых проходят сосуды, образованы фасциями мышц, расположенных возле сосудов. Знание таких топографических взаимоотношений имеет огром­ное прикладное значение для хирургии.

4. Синтез анатомических знаний проводится и в отношении организма как единого целого. Целостность организма — это проявление закона диалектического материализма о всеобщей связи предметов и явлений.

К. Маркс говорил, что высшей формой целостности является органи­ческое целое, т. е. такое целое, которое обладает способностью саморазвития и самовоспроизведения. С точки зрения кибернетики, необходимо учиты­вать способность целого к самоуправлению.

Эти основные свойства целого: саморазвитие, самовоспроизведение и самоуправление — возможны благодаря внутренним процессам взаимодействия между частями и между целым и окружающей его средой. Под такое понятие целостности как раз и подходит организм.

Вокруг взглядов на организм шла и идет идеологическая борьба между материализмом и идеализмом, между диалектическим и механическим материализмом. Механицизм смотрит на организм как на сумму частей, отрицая объединяющее их начало.

Диалектический материализм учит, что целостность — это не механический агрегат неизменных частей, а внутреннее органическое един­ство. Организм — это не простое сложение костей, хрящей, мускулов, крови, нервов. Целое — это сложная система взаимоотношений элементов и про­цессов, обладающая особым качеством, отличающим его от других систем. При этом целое больше суммы его частей, оно имеет новое качество, присущее только ему. Часть же — это подчиненный целому элемент системы.

Применительно к организму новое качество целостности — это способ­ность организма к самостоятельной жизни, к самоуправлению, самовоспроиз­ведению, саморазвитию и обмену веществ с окружающей его средой.

Для лучшего понимания целостности надо учитывать взаимоотноше­ния целого и частей. «Под целым диалектический материализм пони­мает взаимодействие, взаимосвязь и единство частей, входящих в тот или иной предмет... каждая его часть — в то же время проявление сущности целого, его функций» (Царегородцев Г., 1966). Не части тела соединяются в организм, а организм дифференцируется на части; не клетки создают организм, а последний создает клетки. Координация всех функций ор­ганизма интегрирующими системами — это выражение общего и целого в организме.

Целое играет ведущую роль в отношении частей. Такое подчинение столь значительно, что часть, изолированная от организма, не может вы­полнять те функции, которые присущи ей в рамках организма. Пример с лейкоцитом может иллюстрировать это положение.

Целое может существовать как организм и после утраты некоторых не жизненно важных частей. На этом основана вся хирургическая практика, связанная с удалением органов и. частей тела. У низших животных ор­ганизм подчас жертвует частями ради спасения целого. Аналогичные процессы наблюдаются и у человека (ороговение эпидермиса, обновление клеток и кровяных элементов).

Целостность организма признается не только диалектическим материа­лизмом, но и идеализмом. Идеализм тоже стремится найти объединяющее начало частей, но это начало нематериально.


Диалектический материализм учит, что в основе объединения, интегра­ции организма лежит материальное начало. Таким началом, как известно, является нейрогуморальная регуляция при ведущей роли нервной системы.

Нервная система — это главнейшая система организма, которая имеет многообразные функции.

1. а) С точки зрения философии диалектического материализма, нервная
система — это особым образом организованная материя; это высочайший
продукт земной природы, способный познавать ее и самое себя и переде­
лывать природу сообразно потребностям человека;

б) с точки зрения ленинской теории отражения, это орган отражения действительности в нашем сознании.

2. С точки зрения кибернетики, нервная система является органом
информации, самоуправления и саморегуляции.

3. С точки зрения анатомии и физиологии и лежащей в их основе
идеи нервизма, она представляет ведущую систему объединения, интегра­
ции организма в единое целое и уравновешивания его с окружающей средой.

Целостность организма имеет материальный анатомический субстрат. Этот субстрат образуют:

1. Нервная система, устанавливающая нервные связи организма.

2. Эндокринные железы, вырабатывающие гормоны, поступающие в
кровь, и другие жидкости тела; пути проведения жидкостей — сосуды.
Благодаря жидкостям устанавливаются гуморальные связи организма.

3. Соединительная ткань, которая в виде связок, оболочек, фасций и
других структур мягкого скелета соединяет все органы в единую массу тела
и образует механические связи организма.

Связи, при помощи которых осуществляется объединение, интеграция организма, имеют 2 основных типа: 1) субординация — соподчинение; 2) ко­ординация и корреляция — соотношения.

Субординация, или соподчинение, всех частей организма совершается по схеме:

Целостный организм

Системы органов и аппараты

Органы

Морфофункциональные единицы органов

Ткани

Клетки

Неклеточные структуры


Органы, ткани и клетки — это частные структуры, служащие для приспособления организма к среде.

Каждая из них имеет относительную самостоятельность и является в свою очередь целостным образованием.

Следовательно, целостность проявляется по-разному на разных уров­нях исследования: на макроскопическом — в виде систем органов, отдельных органов и тканей; на макро-микроскопическом — в виде тканей; на микро­скопическом уровне — в виде клеток и неклеточных структур; на субмикро­скопическом уровне — в виде неклеточных структур, частей клеток и молекул.

Частные структуры организма — органы, ткани, клетки, будучи связаны в единое целое, вместе с тем представляют собой целостную конструкцию и имеют в системе организма относительную автономию.

Благодаря этому при некоторых видах клинической смерти организма как целого части его сохраняют способность к жизни, и при своевременных мероприятиях по реанимации организм можно снова оживить.

Эта же относительная автономия позволяет отключать сердце от кровообращения для операции на сухом сердце и снова включать его в общий ток крови после операции.

Следует иметь в виду, что организм не складывается из относительно самостоятельных частей, не органы и клетки создают организм, а эти части образуются организмом по мере усложнения его структуры и функций, по мере его дифференциации. Организм дифференцируется, сохраняя свою интеграцию. И чем дальше идет эта дифференциация, чем больше возникает в организме органов, тканей и клеток, тем сложнее и труднее объединять, интегрировать их в единое целое. Чем глубже дифференциация, тем выше интеграция. Дифференциация и интеграция составляют диалектическое единство.

Такова краткая характеристика связей организма, осуществляющихся по типу субординации.

Другой тип связей — это координация и корреляция.

Координация— это соотношение развития органов в филогенезе, а корреляция — в онтогенезе.

Примером координации может служить соотношение развития руки и мозга в процессе эволюции. У четвероногих животных передняя конечность еще не является рукой и служит средством передвижения тела. Соответственно такой функции и строению передней конечности построена и кора головного мозга, в частности ее моторная зона. У человекообраз­ных обезьян передняя конечность становится рукой, обладающей способ­ностью хватать предметы. Такая рука сохраняет еще способность служить средством передвижения, но вместе с тем она уже может схватывать готовые предметы природы и пользоваться ими. Соответственно возникновению хвата­тельной функции руки в коре мозга развиваются корковые концы анализаторов, особенно в моторной зоне, и появляются новые поля.

Наконец, у человека рука становится органом труда, изготовляющим орудия производства. «И то, что шло на пользу руке, шло также на пользу всему телу, которому она служила...» {Маркс К., Энгельс Ф. Соч., 2-е изд., т. 20, с. 488).

Соответственно новой функции руки как органа труда появляются и новые поля в коре головного мозга. В моторной зоне ее, как известно, спроецировано все тело. При этом наибольшую территорию занимает рука; из территории, занимаемой проекцией руки, наибольшую площадь имеет кисть, а из территории кисти — большой палец, обладающий способностью оппозиции остальным четырем.


Таким образом, развитие коры большого мозга соответствует развитию руки и ее частей, непосредственно соприкасающихся с орудием труда. Это подтверждает положение Энгельса о том, что труд способствовал развитию мозга.

Следовательно, рука и мозг в процессе эволюции находятся в динами­ческой координации.

Корреляция — это взаимозависимость частей, где всякое изменение одной из частей отражается на других и само является ответом на измене­ние частей, воздействующих на нее.

Наличие коррелятивных связей послужило основанием для известного учения о корреляции Ж. Кювье.

На базе этого учения выросло современное представление о конститу­ции человека, в частности о взаимозависимости между типом телосложения и расположением внутренностей.

Благодаря корреляции между типом телосложения и топографией внутренностей по внешнему строению тела можно представить себе особен­ности внутреннего строения.

Топографические корреляции представляют взаимозависимые отношения органов, имеющих разные строение и функции. Примером такой корреляции может служить сегмент туловища.

Следовательно, проводя синтез анатомических данных, надо учитывать, коррелятивные связи как между отдельными органами и системами, так и между внутренним и внешним строением тела.

Итак, объединение организма в единое целое, его интеграция осущест­вляется различными формами соотносительного развития частей — корреля­ции, координации и субординации.

В корреляциях (и координациях) части выступают как более или менее равные образования.

Субординация — это соподчинение частей.

В основе интеграции, объединения частей организма в единое целое, лежит приспособительная реакция организма к окружающей среде.

5. Метод синтеза вскрывает связи между строением организма и окружающей его средой, которая оказывает формообразующее влияние на органы и организм в целом.

Адаптация структуры живого к условиям жизни сопровождается не­прерывной морфологической перестройкой некоторых органов и тканей живого человеческого тела. Изучение закономерностей этой перестройки вскрывает конкретные индивидуальные изменения структуры, обусловленные воздействием конкретных факторов внешней среды. Примером этого может служить перестройка скелета в течение жизни человека под влиянием деятель­ности мышц в процессе труда или занятий спортом.

Эта перестройка настолько значительна и специфична, что по рентгено­граммам костей можно определить профессию или спортивную специализа­цию данного человека, если таковые связаны с постоянными и однообраз­ными физическими нагрузками.

Другим не менее ярким примером адаптации организма к условиям окружающей его среды является приспособление человека к условиям жизни в новой для организма внешней среде — внеземной, т. е. к условиям жизни и работы в экстремальных условиях полетов в космос, когда организм испытывает действие гравитационных перегрузок, состояние невесомости, гипокинезии и гиподинамии.

Изучение изменений структуры организма и его органов и систем в процессе приспособления (адаптация) здорового организма к особым (экстремальным) условиям жизни в космосе и при возвращении на землю


(реадаптация) составляет суть нового направления в анатомии, названного нами «космическая анатомия».

Космическая анатомия сосудистой системы начала впервые разрабаты­ваться на кафедре нормальной анатомии I Ленинградского медицинского института им. акад. И. П. Павлова под руководством проф. М. Г. При­веса (Л. А. Алексина, А. В. Дроздова, Н. И. Зотова, А. К. Косоуров, В. А. Муратикова, И. Н. Преображенская, Б. И. Пшегорницкий, Л. И. Са­винова, В. И. Степанцов, В. Г. Шишова и др.). По исследованиям по­следнего времени (Косоуров А. К., 1980 — 1983), гипокинезия и гравита­ционные перегрузки вызывают морфологические изменения стенки маги­стральных артерий, которые носят адаптивный характер и являются обратимыми.

Подводя итог всему вышеизложенному, можно сказать следующее.

Если старая, описательная анатомия изучала строение тела человека как таковое, в отрыве от условий его жизни, то современная анатомия исследует человеческий организм в его единстве с внешней средой — биологи­ческой и социальной.

Изучение анатомии живых людей с учетом условий их жизни и работы дает в руки анатома богатейший материал для построения такой анатомии живого человека, которая ставит своей целью вскрытие закономерностей специфической эволюции человека и его индивидуальной изменчивости, обусловленных конкретным влиянием окружающей среды. Установление этих закономерностей создает предпосылки и для овладения ими, что способ­ствует разработке проблемы направленного воздействия на человеческий организм с целью его гармоничного развития.

Разная адаптация структуры к внешним воздействиям связана с разной устойчивостью человека к заболеваниям и с их разными проявлениями.

Современная медицина не удовлетворяется общими схемами болезней, а стремится исследовать и лечить данного человека. Поэтому она требует и от анатомии не общих схем строения абстрактного человеческого тела, а точных сведений о структуре конкретного человеческого организма.

Изучение строения живого целостного организма, рассматриваемого в его единстве с условиями жизни, дает возможность переходить от анато­мии человека вообще к конкретной индивидуальной анатомии людей, с учетом их образа жизни и труда.

В противовес классической описательной анатомии развивается новая анатомия, которая не только описывает и объясняет структуру человеческого организма, но и вместе с другими науками изменяет ее, управляет ею с целью всесторонне гармоничного развития человека.


ОГЛАВЛЕНИЕ

Предисловие................................................................................................................................................... 3

Введение....................................................................................................................................................... 4

Предмет анатомии (анатомия как наука)............................................................................. 4

Методы анатомического исследования.......................................................................................... 7

Краткий очерк истории анатомии.............................................................................................................. 9

Анатомия в России до Великой Октябрьской

<== предыдущая лекция | следующая лекция ==>
Анализатор гравитации, или статокинетический | Опорно-двигательный аппарат
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 884; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.